Journal of Colloid and Interface Science, Vol.581, 195-204, 2021
Heterogeneous activation of peroxymonosulfate by cobalt-doped MIL-53 (Al) for efficient tetracycline degradation in water: Coexistence of radical and non-radical reactions
Compared with the transition metal induced homogeneous catalytic system, the heterogeneous catalytic system based on transition metal-doped metal organic frameworks (MOFs) were stable for the efficient utilization of transition metal and avoiding the metal leaching. The aim of this work is to synthesize Co doped MIL-53(Al) by one-step solvent thermal method and use it to activate peroxymonosulfate (PMS) to remove tetracycline (TC) in water. The successful synthesis of Co-MIL-53(Al) samples was demonstrated by XDR, SEM and FTIR characterizations. The 25% Co-MIL-53(Al)/PMS system showed the optimal TC removal effect compared to the PMS alone and MIL-53(Al)/PMS system. The catalytic performances of Co-MIL-53(Al)/PMS system in conditions of different pH, co-existing substances and water bodies were investigated. Quenching experiment and electron paramagnetic resonance (EPR) showed that the degradation mechanism by Co-MIL-53(Al) activation PMS was mainly attributed to sulfate radical (SO4 center dot-) and singlet oxygen (O-1(2)) non-radical. The degradation intermediates of TC were also identified and the possible degradation pathways were proposed. Co-MIL-53(Al) showed good activity after four cycles. These findings demonstrated that Co-MIL-53(Al) can be a promising heterogeneous catalyst for activating PMS to degrade TC. (C) 2020 Elsevier Inc. All rights reserved.
Keywords:Co-doped MIL-53(Al);Heterogeneous system;Peroxymonosulfate;Tetracycline;Sulfate radicals;Singlet oxygen