- Previous Article
- Next Article
- Table of Contents
Journal of Materials Science, Vol.56, No.9, 5309-5320, 2021
Possibility of an integrated transmission electron microscope: enabling complex in-situ experiments
Multimodal in-situ experiments are the wave of the future, as this approach will permit multispectral data collection and analysis during real-time nanoscale observation. In contrast, the evolution of technique development in the electron microscopy field has generally trended toward specialization and subsequent bifurcation into more and more niche instruments, creating a challenge for reintegration and backward compatibility for in-situ experiments on state-of-the-art microscopes. We do not believe this to be a requirement in the field; therefore, we propose an adaptive instrument that is designed to allow nearly simultaneous collection of data from aberration-corrected transmission electron microscopy (TEM), probe-corrected scanning transmission electron microscopy, ultrafast TEM, and dynamic TEM with a flexible in-situ testing chamber, where the entire instrument can be modified as future technologies are developed. The value would be to obtain a holistic understanding of the underlying physics and chemistry of the process-structure-property relationships in materials exposed to controlled extreme environments. Such a tool would permit the ability to explore, in-situ, the active reaction mechanisms in a controlled manner emulating those of real-world applications with nanometer and nanosecond resolution. If such a powerful tool is developed, it has the potential to revolutionize our materials understanding of nanoscale mechanisms and transients.