화학공학소재연구정보센터
Journal of Materials Science, Vol.56, No.7, 4588-4598, 2021
Maintenance of superhydrophobic concrete for high compressive strength
Concrete is often used in building, bridges, dams, roads and other infrastructures. However, the porosities and natural hydrophilicity of concrete often induce the damage of the concrete architecture or other disasters. Endowing the concrete with superhydrophobicity can effectively improve the antifreeze-thaw, anti-corrosion and anti-icing properties and expand the application prospect of concrete in the modern construction industry. Despite all this, the compressive strength of superhydrophobic concrete is not high enough, limiting its application. Here, we maintained superhydrophobic concrete for 28 days and improved the compressive strength for 3.5 times from 10 MPa to 34.48 MPa. The main mechanism is that calcium silicate hydrate structures grow with the increase in maintenance time and make the inside microstructures connected more closely. In addition, XPS spectra were also collected to investigate the chemical compositions of the superhydrophobic concrete. A series of tests were carried out on superhydrophobic concrete and indicated that the superhydrophobic concrete after maintenance had high surface robustness, anti-corrosion property and high anti-icing and deicing capacity, showing the application value.