Journal of Physical Chemistry A, Vol.125, No.1, 376-386, 2021
Polymerization Mechanism of Nitrogen-Containing Heteroaromatic Compound Under High-Pressure and High-Temperature Conditions
Hydrogenated carbon nitride is synthesized by polymerization of 1,5-naphthyridine, a nitrogen-containing heteroaromatic compound, under high-pressure and high-temperature conditions. The polymerization progressed significantly at temperatures above 573 K at 0.5 GPa and above 623 K at 1.5 GPa. The reaction temperature was relatively lower than that observed for pure naphthalene, suggesting that the reaction temperature is considerably lowered when nitrogen atoms exist in the aromatic ring structure. The polymerization reaction largely progresses without significant change in the N/C ratio. Three types of dimerization are identified; naphthylation, exact dimerization, and dimerization with hydrogenation as determined from the gas chromatograph-mass spectrometry analysis of soluble products. Infrared spectra suggest that hydrogenation products were likely to be formed with spa carbon and NH bonding. Solid-state C-13 nuclear magnetic resonance reveals that the sp(3)/sp(2) ratio is 0.14 in both the insoluble solids synthesized at 0.5 and 1.5 GPa. Not only the dimers but also soluble heavier oligomers and insoluble polymers formed through more extensive polymerization. The major reaction mechanism of 1,5-Nap was common to both the 0.5 and 1.5 GPa experiments, although the required reaction temperature increased with increasing pressure and aromatic rings preferentially remained at the higher pressure.