Journal of Physical Chemistry B, Vol.124, No.43, 9546-9555, 2020
Generation of Long-Lived Photoinduced Charge Separation in a Supramolecular Toroidal Assembly
Efficiencies of artificial photosynthetic and photocatalytic systems depend on their ability to generate long-lived charge-separated (CS) states in photoinduced electron transfer (PET) reactions. PET, in most cases, is followed by an ultrafast back electron transfer, which severely reduces lifetime and quantum yield of CS states. Generation of a long-lived CS state is an important goal in the study of PET reactions. Herein, we report that this goal is achieved using a hierarchically self-assembled anthracenemethyl viologen donor-acceptor system. Anthracene linked to two beta-cyclodextrin molecules (CD-AN-CD) and methyl viologen linked to two adamantane units (AD-MV2+-AD) form an inclusion complex in water, which further self-assembled into well-defined toroidal nanostructures. The fluorescence of anthracene is highly quenched in the self-assembled system because of PET from anthracene to methyl viologen. Irradiation of the aqueous toroidal solution led to formation of a long-lived CS state. Rational mechanisms for the formation of the toroidal nanostructures and long-lived photoinduced charge separation are presented in the paper.