Journal of Physical Chemistry B, Vol.124, No.42, 9365-9370, 2020
Single-Molecule Mechanical Unfolding of AT-Rich Chromosomal Fragile Site DNA Hairpins: Resolving the Thermodynamic and Kinetic Effects of a Single G-T Mismatch
Chromosomal fragile sites (CFSs) contain AT-rich sequences that tend to form hairpins on lagging strands in DNA replication, making them hotspots for chromosomal rearrangements in cancers. Here, we investigate the structural stability of the AT-rich CFS DNA hairpins with a single non-AT base pair using magnetic tweezers. Strikingly, a single G-T mismatched base pair in the short CFS DNA hairpin gives a 38.7% reduction of the unfolding Gibbs free energy and a 100-fold increase of the transition kinetics compared to a single G-C matched base pair, which are deviated from the theoretical simulations. Our study reveals the unique features of CFSs to provide profound insights into chromosomal instability and structure-specific genome targeting therapeutics for genetic disorder-related diseases.