Journal of Process Control, Vol.92, 108-118, 2020
Adaptive horizon economic nonlinear model predictive control
In this paper, we present a computationally efficient economic NMPC formulation, where we propose to adaptively update the length of the prediction horizon in order to reduce the problem size. This is based on approximating an infinite horizon economic NMPC problem with a finite horizon optimal control problem with terminal region of attraction to the optimal equilibrium point. Using the nonlinear programming (NLP) sensitivity calculations, the minimum length of the prediction horizon required to reach this terminal region is determined. We show that the proposed adaptive horizon economic NMPC (AH-ENMPC) has comparable performance to standard economic NMPC (ENMPC). We also show that the proposed adaptive horizon economic NMPC framework is nominally stable. Two benchmark examples demonstrate that the proposed adaptive horizon economic NMPC provides similar performance as the standard economic NMPC with significantly less computation time. (C) 2020 The Author(s). Published by Elsevier Ltd.
Keywords:Economic model predictive control;Fast MPC;Sensitivity;Dynamic optimization;Process control