Journal of the American Ceramic Society, Vol.103, No.8, 4150-4158, 2020
Perovskite quantum dots growth in situ in transparent medium for short wavelength shielding
High energy ultraviolet (UV) and blue light (short wavelength) radiation is proved to be harmful to human eyes, skin, and biological genomes. However, developing effective shielding materials providing protect from short wavelength is still a great challenge. Here, Eu3+-doped CsPbBr3 embedded in a transparent glass medium is proved to shield the short wavelength from 200 to 475 nm with high performance, which is prepared by a facile and efficient melting-quenching technique. The uniform distribution of the CsPbBr3 quantum dots (QDs) growth in situ from the transparent glass matrix ensures the high transmittance (>90%) at the long wavelength (520-800 nm). In addition, the excellent short wavelength shielding ability of the Eu3+-doped CsPbBr3 glass ceramics (EGC) is demonstrated even suffered with accelerated weathering tests as long as 480 hours. Moreover the cell viability of A549 cells is well preserved thanks to the completely blocked blue light by the as-obtained EGC, which unambiguously demonstrates the promising application of EGC as short wavelength shielding materials.