Journal of the American Chemical Society, Vol.143, No.7, 3003-3012, 2021
Site-Selective Direct C-H Pyridylation of Unactivated Alkanes by Triplet Excited Anthraquinone
Site-selective C-H functionalization in chemical feedstocks is a challenging and useful reaction in the broad field of chemical research. Here, we report a modular photochemical platform for the site-selective C-H pyridylation of unactivated hydrocarbons via the unique synergistic effects of triplet excited anthraquinone and an amidyl radical-based reverse hydrogen atom transfer (RHAT) agent. The selective pyridylation of tertiary and secondary C(sp(3))-H bonds in abundant chemical feedstocks was achieved by employing various N-aminopyridinium salts in a highly selective fashion, thus providing a new catalytic system for the direct construction of high-value-added compounds under ambient reaction conditions. Moreover, this operationally simple protocol is applicable to a variety of linear-, branched-, and cyclo-alkanes and more complex molecules with high degrees of site selectivity under visible-light conditions, which provides rapid and straightforward access to versatile synthons for upgrading feedstocks under mild, metal-free reaction conditions.