화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.4, 232-236, April, 2021
세륨산화물과 금 나노입자의 계면에서 일어나는 물 분자의 활성화
Density Functional Theory Study of Water Activation at Au-Ceria Interfaces
E-mail:
We use vdW-corrected density functional theory (DFT) calculations with additional electron distribution correction to study the water binding chemistry of an Au nanoparticle supported on CeO2(111) with a linear step-edge. The initial structural model of Au/CeO2 used for DFT calculations is constructed by stabilizing a Au9 nanoparticle at the linear step-edge on a CeO2(111) slab. The calculated binding energy of a water molecule clearly shows that the interfacial site between Au and CeO2 binds water more strongly than the binding sites at the surface of Au nanoparticle. Subsequent water dissociation calculation result shows that the interface-bound water can be relatively easily dissociated into.OH and .H, providing a hydroxyl group that can be utilized as an oxygen source for CO oxidation. Based on the low dissociation energy of the interface bound water molecule, we suggest that the water at the Au-CeO2 interface can facilitate further oxidation of Au-bound CO. Our results point out that Au-CeO2 interface-bound water is beneficial for low-temperature oxidation reactions such as the water-gas shift reaction or preferential CO oxidation reaction.
  1. Risse T, Shaikhutdinov S, Nilius N, Sterrer M, Freund HJ, Accounts Chem. Res., 41, 949 (2008)
  2. Schauermann S, Freund HJ, Accounts Chem. Res., 48, 2775 (2015)
  3. Schauermann S, Nilius N, Shaikhutdinov S, Freund HJ, Accounts Chem. Res., 46, 1673 (2013)
  4. Cargnello M, Doan-Nguyen VVT, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Fornasiero P, Murray CB, Science, 341(6147), 771 (2013)
  5. Kim HY, Henkelman G, J. Phys. Chem. Lett., 4, 216 (2013)
  6. Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Sanz JF, Rodriguez JA, Science, 345(6196), 546 (2014)
  7. Rodriguez JA, Grinter DC, Liu Z, Palomino RM, Senanayake SD, Chem. Soc. Rev., 46, 1824 (2017)
  8. Ha H, Yoon S, An K, Kim HY, ACS Catal., 8, 11491 (2018)
  9. Choi Y, Cha SK, Ha H, Lee S, Seo HK, Lee JY, Kim HY, Kim SO, Jung W, Nat. Nanotechnol., 14(3), 245 (2019)
  10. Yoo M, Yu YS, Ha H, Lee S, Choi JS, Oh S, Kang E, Choi H, An H, Lee KS, Energy Environ. Sci., 13, 1231 (2020)
  11. Kim HY, Henkelman G, J. Phys. Chem. Lett., 3, 2194 (2012)
  12. Kim HY, Lee HM, Henkelman G, J. Am. Chem. Soc., 134(3), 1560 (2012)
  13. Zhang L, Kim HY, Henkelman G, J. Phys. Chem. Lett., 4, 2943 (2013)
  14. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T, Nat. Chem., 3, 634 (2011)
  15. Wang A, Li J, Zhang T, Nat. Rev. Chem., 2, 65 (2018)
  16. Rodriguez JA, Liu P, Hrbek J, Evans J, Perez M, Angew. Chem.-Int. Edit., 46, 1329 (2007)
  17. Rodriguez JA, Graciani J, Evans J, Park JB, et al., Angew. Chem.-Int. Edit., 121, 8191 (2009)
  18. Rodriguez JA, Hanson JC, Stacchiola D, Senanayake SD, Phys. Chem. Chem. Phys., 15, 12004 (2013)
  19. Bruix A, Rodriguez JA, Ramirez PJ, Senanayake SD, Evans J, Park JB, Stacchiola D, Liu P, Hrbek J, Illas F, J. Am. Chem. Soc., 134(21), 8968 (2012)
  20. Kim HY, Liu P, ChemCatChem, 5, 3673 (2013)
  21. Park JB, Graciani J, Evans J, Stacchiola D, Ma S, et al., Proc. Natl. Acad. Sci. U. S. A., 106, 4975 (2009)
  22. Ha H, An H, Yoo M, Lee J, Kim HY, J. Phys. Chem., 121, 26895 (2017)
  23. Kresse G, Furthmuller J, Phys. Rev. B, 54, 1169 (1996)
  24. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP, Phys. Rev. B, 57, 1505 (1998)
  25. Fernandez-Torre D, Kosmider K, Carrasco J, Ganduglia-Pirovano and MV, Perez R, J. Phys. Chem. C, 116, 13584 (2012)
  26. Jiri K, David RB, Angelos M, J. Phys. Condens. Matter, 22, 022201 (2010)
  27. Klimes J, Bowler DR, Michaelides A, Phys. Rev. B, 83, 195131 (2011)
  28. Blochl PE, Phys. Rev. B, 50, 17953 (1994)
  29. Shin K, Zhang L, An H, Ha H, Yoo M, Lee HM, Henkelman G, Kim HY, Nanoscale, 9, 5244 (2017)
  30. Choi H, Kang EJ, Kim HY, Korean J. Mater. Res., 30(5), 267 (2020)