Langmuir, Vol.37, No.10, 3049-3056, 2021
Spreading Dynamics of a Precursor Film of Ionic Liquid or Water on a Micropatterned Polyelectrolyte Brush Surface
Time evolution of the microscopic wetting velocity of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) or water on a micrometer-scale line-patterned surface with a poly(3-sulfopropyl methacrylate) brush and a hydrophobic perfluoroalkyl monolayer was precisely measured by direct observation using optical microscopy and a selective dyeing method over a long period (178 days). When a liquid droplet was placed on the dyed linepatterned brush surface, the liquid penetrated and spread into the polymer brush layer, forming a precursor thin film that extended beyond the macroscopic contact line. The elongation proceeded in two stages by an adiabatic process followed by a diffusive process. The elongation distance X increased with time in proportion to t(2.6) for water and t(0.81 )for EMI-TFSI during the adiabatic process. In a diffusive process, the advancing velocity of the precursor film was markedly reduced to be expressed as X alpha t(0.66 )for water and X- alpha t( )(0.21)for EMI-TFSI, indicating that the diffusive process was affected by the energy dissipation of the wetting system. The high viscosity and the strong molecular interaction of EMI-TFSI with the polymer brush gave a large entropy change during the wetting process to result in a slower spreading velocity.