화학공학소재연구정보센터
Langmuir, Vol.36, No.43, 12990-13000, 2020
Complex Formation of Sulfobetaine Surfactant and Ionic Polymers and Their Stimuli Responsivity
We investigated the kinds of complexes sulfobetaine surfactant and ionic polymer formed using lauramidopropyl hydroxysultane (LAPHS) as a sulfobetaine surfactant, poly(sodium styrenesulfonate) (PSSNa) as the anionic polymer and poly[3-(methacrylamido)propyl trimethylammonium chloride] (PMAP-TAC) as the cationic polymer. The fundamental properties of LAPHS at various salt concentrations were estimated by various measurements, and it was confirmed that the LAPHS micelles alone did not show temperature responsiveness. The presence of large aggregates in addition to LAPHS micelles was confirmed in the aggregates prepared by adding PSSNa to LAPHS at a charge ratio of 1:0.5, 1:1, and 1:2. However, the aggregates could not be formed when the salt concentration was high or when a monomer was added instead of the polymer. This revealed that the cation part of sulfobetaine, which is the shell of LAPHS micelles, and the anion part of PSSNa electrostatically interacted with each other to form a large aggregate. On the other hand, unlike the case of LAPHS micelles alone and the aggregate consisting of LAPHS micelles and PSSNa, the aggregate of LAPHS micelles and PMAPTAC showed an unprecedented phenomenon of "clear -> opaque -> clear" with increasing concentration in the concentration range above CMC. The change in the transition temperature due to the change of concentration was a factor. Additionally, we confirmed that the transition temperature was lowered when the concentration was higher than CMC or the salt concentration was increased, and the transition temperature was increased when the PMAPTAC with a high degree of polymerization was added. These results suggested that the LAPHS micelles and the ionic polymer form an aggregate, and the temperature responsivity can be expressed by the interaction with the cationic polymer.