화학공학소재연구정보센터
Langmuir, Vol.36, No.41, 12202-12212, 2020
Metal (Mn, Fe, Co, Ni, Cu, and Zn) Phthalocyanine-Immobilized Mesoporous Carbon Nitride Materials as Durable Electrode Modifiers for the Oxygen Reduction Reaction
In the search for alternative sources to replace fossil fuels, carbon nitride materials can be used in a variety of ways. In the present work, porosity is introduced to the carbon nitride material using mesoporous silica material, MCM-41, as a hard template, and a mesoporous carbon nitride (MCN) material is synthesized. Further, the MCN is modified by immobilizing metal phthalocyanine (MPc, where M = Mn, Fe, Co, Ni, Cu, and Zn). The resulting MPc-incorporated MCN materials (MPc@MCN) were tested for the electrocatalytic oxygen reduction reaction (ORR) in acidic and basic media. Detailed studies reveal that the FePc@MCN and CoPc@MCN materials exhibit higher ORR activity than the other composites in 0.1 M KOH. FePc@MCN follows a direct four-electron oxygen reduction mechanism and shows ORR onset potential (vs RHE) at 0.93 V (in 0.1 M KOH), which is very close to the onset potential exhibited by the state-of-the-art material, Pt-C (1.0 V), and higher than several similar composites of MPc with carbon supports tested in similar environments. Besides, due to the inherent property of coordination through nitrogen present on the MCN, FePc@MCN shows excellent stability even after 3000 cyclic voltammetry (CV) cycles. FePc@MCN was found to have a better methanol tolerance in comparison to Pt-C in basic medium. CoPc@MCN shows a highly selective two-electron reduction reaction in both acidic and basic media at lower overpotential than many of the reported catalysts for the two-electron oxygen reduction. Therefore, these materials (FePc@MCN and CoPc@MCN) can be used as suitable alternatives to replace Pt and other expensive materials in ORR and related applications.