화학공학소재연구정보센터
Langmuir, Vol.36, No.39, 11508-11516, 2020
An Enhanced Reduction-Adsorption Strategy for Cr(VI): Fabrication and Application of L-Cysteine-doped Carbon@Polypyrrole with a Core/Shell Composite Structure
Reclamation and recycling of heavy metal ions can offer environmental protection and sustainable development. Here, we report the preparation of L-cysteine (L-cys)-doped glucose carbon sphere (GCS)@polypyrrole (PPy) composites (GCS@PPy/L-cys). The adsorption performance and mechanism of GCS@PPy/L-cys toward Cr(VI) from water were investigated in detail. The chromate enrichment on GCS@PPy is significantly facilitated by doping with L-cys, which prevents the oxidative collapse of the structure. This approach leads to many reduction-adsorption sites that reduce the highly hazardous Cr(VI) into less toxic Cr(III). More significantly, the composite can be reused to fabricate supercapacitors that avoid secondary pollution. This strategy offers high-efficiency treatment and sustainable utilization of hypervalent metals in water.