화학공학소재연구정보센터
Langmuir, Vol.36, No.33, 9867-9877, 2020
Role of Charge in Lipid Vesicle Binding and Vesicle Surface Saturation by Gaduscidin-1 and Gaduscidin-2
The histidine-rich antimicrobial peptides Gad-1 and Gad-2, from paralogous genes in cod, provide an opportunity to examine the effect of charge and nonelectrostatic factors on peptide-vesicle interaction and on peptide antimicrobial activity. In this study, the dependence of vesicle -potential on peptide concentration has been used to examine the binding of these peptides to model vesicle surfaces at pH = 5.0, for which the charges of Gad-1 and Gad-2 are +8 and +5, respectively, and at pH = 7.0, where their charges are +3 and +1, respectively. Interpreting the observed -potential behaviors as examples of Langmuir adsorption isotherms, it is possible to infer the equilibrium constant for peptide-vesicle binding, the fraction of the peptide bound at low peptide concentration, and the maximum peptide-to-lipid ratio when the vesicle surface is saturated at high peptide concentration. For both peptides, higher peptide charge is found to be correlated with a lower fraction of the peptide being bound to vesicle surfaces at low peptide concentration and with a smaller maximum bound peptide-to-lipid ratio at high peptide concentration. The equilibrium binding constant, on the other hand, is more strongly correlated with the peptide sequence than with the charge. Gad-1, which has been shown to be more biologically active than Gad-2, displayed a significantly higher equilibrium binding constant. These observations suggest that while the maximum peptide density on the vesicle surface is limited by electrostatic interactions, the free energy of peptide binding, like the observed antimicrobial activities of the Gad peptides, is also sensitive to other peptide factors which might, for example, influence hydrophobic interactions.