Macromolecules, Vol.53, No.20, 8951-8959, 2020
Gas Transport in a Polymer of Intrinsic Microporosity (PIM-1) Substituted with Pseudo-Ionic Liquid Tetrazole-Type Structures
We report a side group modification strategy to tailor the structure of a polymer of intrinsic microporosity (PIM-1). PIM-1 with an average of similar to 50% of the repeat units converted to tetrazole is prepared, and a subsequent reaction then introduces three types of pseudo-ionic liquid tetrazole-like structures (PIM-1-ILx). The presence of pseudo-ionic liquid functional groups in the PIM-1 structure increases gas selectivities for O-2/N-2 and CO2/N-2, while it decreases pure-gas permeabilities. The overall gas separation performance of PIM-1-ILx is close to the 2008 Robeson upper bound. Since the tetrazoles are versatile groups for building a wide variety of ionic liquids, the modification method can be expanded to explore a broad spectrum of functional groups.