화학공학소재연구정보센터
Nature, Vol.592, No.7852, 49-+, 2021
Stabilization of liquid instabilities with ionized gas jets
Impinging gas jets can induce depressions in liquid surfaces, a phenomenon familiar to anyone who has observed the cavity produced by blowing air through a straw directly above a cup of juice. A dimple-like stable cavity on a liquid surface forms owing to the balance of forces among the gas jet impingement, gravity and surface tension(1,2). With increasing gas jet speed, the cavity becomes unstable and shows oscillatory motion, bubbling (Rayleigh instability) and splashing (Kelvin-Helmholtz instability)(3,4). However, despite its scientific and practical importance-particularly in regard to reducing cavity instability growth in certain gas-blown systems-little attention has been given to the hydrodynamic stability of a cavity in such gas-liquid systems so far. Here we demonstrate the stabilization of such instabilities by weakly ionized gas for the case of a gas jet impinging on water, based on shadowgraph experiments and computational two-phase fluid and plasma modelling. We focus on the interfacial dynamics relevant to electrohydrodynamic (EHD) gas flow, so-called electric wind, which is induced by the momentum transfer from accelerated charged particles to neutral gas under an electric field. A weakly ionized gas jet consisting of periodic pulsed ionization waves(5), called plasma bullets, exerts more force via electrohydrodynamic flow on the water surface than a neutral gas jet alone, resulting in cavity expansion without destabilization. Furthermore, both the bidirectional electrohydrodynamic gas flow and electric field parallel to the gas-water interface produced by plasma interacting 'in the cavity' render the surface more stable. This case study demonstrates the dynamics of liquids subjected to a plasma-induced force, offering insights into physical processes and revealing an interdependence between weakly ionized gases and deformable dielectric matter, including plasma-liquid systems.