화학공학소재연구정보센터
Nature, Vol.588, No.7836, 151-+, 2020
Inhibition of LT beta R signalling activates WNT-induced regeneration in lung
Blockade of lymphotoxin beta-receptor (LT beta R) signalling restores WNT signalling and epithelial repair in a model of chronic obstructive pulmonary disease. Lymphotoxin beta-receptor (LT beta R) signalling promotes lymphoid neogenesis and the development of tertiary lymphoid structures(1,2), which are associated with severe chronic inflammatory diseases that span several organ systems(3-6). How LT beta R signalling drives chronic tissue damage particularly in the lung, the mechanism(s) that regulate this process, and whether LT beta R blockade might be of therapeutic value have remained unclear. Here we demonstrate increased expression of LT beta R ligands in adaptive and innate immune cells, enhanced non-canonical NF-kappa B signalling, and enriched LT beta R target gene expression in lung epithelial cells from patients with smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke. Therapeutic inhibition of LT beta R signalling in young and aged mice disrupted smoking-related inducible bronchus-associated lymphoid tissue, induced regeneration of lung tissue, and reverted airway fibrosis and systemic muscle wasting. Mechanistically, blockade of LT beta R signalling dampened epithelial non-canonical activation of NF-kappa B, reduced TGF beta signalling in airways, and induced regeneration by preventing epithelial cell death and activating WNT/beta-catenin signalling in alveolar epithelial progenitor cells. These findings suggest that inhibition of LT beta R signalling represents a viable therapeutic option that combines prevention of tertiary lymphoid structures(1) and inhibition of apoptosis with tissue-regenerative strategies.