Powder Technology, Vol.380, 256-264, 2021
Synthesis of nano-sized TiC powders by designing chemical vapor deposition system in a fluidized bed reactor
Chemical vapor deposition (CVD) process is an effective way to fabricate highly pure ultra-fine powders; however commercial fabrication of high quality TiC powders through conventional CVD (TiCl4-H-2-CH4) system remains a great challenge. The main obstacle is that the conversion of chemically stable TiCl4 to TiC is too low (theoretically 133% at 1000 degrees C) to provide sufficient supersaturation to form powders but only coating. To tackle this problem, relatively unstable TiCl3 was proposed as a novel precursor, which is easier to achieve homogeneous nucleation due to the higher conversion of TiCl3 to TiC in the TiCl3-CH4-H-2 system (theoretically 37.7% at 1000 degrees C). In addition, a fluidized bed reactor (FBR) with fluidized TiC seeds providing local turbulence was employed to boost the homogeneous nucleation. Based on the novel idea, for the first time, high purity nanosized TIC powders (about 77.1 nm, purity 99.46 at.%) were successfully fabricated by a fluidized bed chemical vapor deposition (FBCVD) process. More importantly, an advanced simple and effective process was successfully developed to activate the common TiCl4 raw material to synthesize nano-sized TiC powders by designing the reactor. (C) 2020 Elsevier B.V. All rights reserved.