화학공학소재연구정보센터
Process Biochemistry, Vol.98, 11-20, 2020
Optimizing Immobilization and Stabilization of Feruloyl Esterase from Humicola Insolens and its Application for the Feruloylation of Oligosaccharides
Feruloyl esterase (FAE)-catalyzed esterification reaction is as a potential route for the biosynthesis of feruloylated oligosaccharides as functional ingredients. Immobilization of FAE from Humicola insolens on metal chelate-epoxy supports was investigated. The study of effects of immobilization parameters using response surface methodology revealed the significance of enzyme/support ratio (3.25-29.25 mg/g support), immobilization time (14-38h), buffer molarity (0.27-1.25 M) and pH (4.0-8.0). The interactions between enzymeto-support ratio/buffer molarity and enzyme-to-support ratio/pH were found to be critical for the modulation of the immobilization activity yield and the retention of specific activity, respectively. Optimum conditions for FAE-immobilization on metal chelate Sepabeads (R) EC-EP R were identified to be 22.75 mg FAE/g support, pH of 5.0, 27.7 h and buffer molarity of 0.86 M. At these conditions, an activity yield of 82.4%, a specific activity retention of 143.4%, and an enzyme activity of 395.4 mu oml/min. g support were achieved. Further incubation of the immobilized FAE at pH 10.0 improved its thermostability. Increasing the pore size of the epoxy support improved the retention of FAE hydrolytic activity and the esterifying efficiency of the immobilized biocatalyst. Optimally immobilized and stabilized FAE on metal chelate-epoxy support retained up to 92.9% of the free enzyme feruloylation efficiency to xylooligosaccharides..