Renewable Energy, Vol.161, 1011-1024, 2020
Performance improvement of solar bakery unit by integrating with metal hydride based solar thermal energy storage reactor
Storage of solar thermal energy is an effective way to overcome the issue of incompatibility between the solar system and its users. This paper proposed a novel perception by integrating a metal hydride based thermochemical energy storage (MH-TES) system with a solar bakery unit (SBU). A numerical simulation was performed by using COMSOL MULTIPHYSIS 5.3a to assess the dynamic behavior of the reactor. The results showed that the high-temperature metal hydride (HTMH) reactor during the discharging process has a high improvement potential rate (0.195 kW), a high exergetic factor (59.97%) and low exergy efficiency (30.25%) as compared to HTMH reactor during the heat charging process. The overall exergy efficiency of the HTMH reactor was estimated as 34.03%. The maximum value of energy output (Q(out)), exergy output (E-xout), gravimetric exergy output rate (GEOR) and gravimetric efficient heat output rate (GEHOR) during discharging period was calculated as 1560 W, 174 W, 7.4 W/kg and 66 W/kg, respectively. The energy efficiency of SBU is improved from 6% to 42.89% by integrating with the MH-TES system. This paper presents a comprehensive approach for thermal analysis of HTMH for the solar bakery system, which contributes to system optimization for efficient solar energy storage. (C) 2020 Elsevier Ltd. All rights reserved.
Keywords:Solar thermal energy storage;(MgH2+V2O5) reactor;Solar bakery unit;Performance improvement;Numerical simulation;Thermal analysis