Polymer(Korea), Vol.45, No.3, 372-379, May, 2021
조직접착성 소재로서의 갈릭산 함유 글리콜 키토산 유도체의 제조 및 특성 평가
Synthesis and Characterization of Gallic Acid Conjugated Glycol Chitosans for Tissue Adhesive Applications
E-mail:, ,
초록
본 연구에서는 생체적합성이 우수한 글리콜 키토산에 생기능성 분자인 갈릭산(GA)을 화학적으로 결합하고, 자가-가교(self-crosslinking) 및 자가-치유(self-healing)가 가능한 갈릭산 함유 글리콜 키토산(GA-GC) 하이드로젤을 제조하였으며, 조직접착성 소재로의 응용 가능성을 평가하였다. GA의 반응 몰비를 조절하여 GA 함량이 서로 다른 일련의 GA-GC 유도체들을 합성하고, GA의 파이로갈롤기에 의한 자가-가교 반응을 통해 하이드로젤을 제조하였다. GA-GC 하이드로젤의 자가-치유 능력을 점탄성 분석을 통해 확인하였고, 하이드로젤의 GA 함량이 증가됨에 따라 압축강도와 조직 접착강도가 증가하는 것을 관찰하였다. 생분해성과 낮은 세포독성을 보임으로써 GA-GC 하이드로젤은 조직접착성 생체재료로 유용하게 응용될 수 있을 것으로 기대된다.
In this study, we developed self-crosslinkable and self-healing hydrogels by conjugating biocompatible and biodegradable glycol chitosan (GC) with biofunctional gallic acid (GA) and evaluated their potential application as a new tissue adhesive biomaterial. A series of GA-GC derivatives with different GA content were synthesized by varying the feed molar ratio of GA and their hydrogels were prepared via self-crosslinking reaction between pyrogallol groups of GA. The self-healing ability of GA-GC hydrogels was confirmed by rheological analysis, and their mechanical strength and tissue adhesion strength were observed to increase as the GA content of the hydrogels increased. The GA-GC hydrogels with biodegradability and low cytotoxicity would be useful as new tissue adhesive biomaterials.
Keywords:glycol chitosan;gallic acid;tissue adhesive application;hydrogel;self-crosslinking;self-healing
- Bao ZX, Gao MH, Sun Y, Nian R, Xian M, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 111, 110796 (2020)
- Zhao PC, Yin C, Zhang Y, Chen XY, Yang BG, Xia J, Bian LM, J. Mater. Chem. A, 8, 12463 (2020)
- Dunn CJ, Goa KL, Drugs, 58, 863 (1999)
- Spotnitz WD, Am. J. Surg., 182, 8S (2001)
- Carvalho MVH, Marchi E, Fruchi AJ, Dias BVB, Pinto CL, dos Santos GR, Acencio MMP, Clinics, 72, 624 (2017)
- Han HH, Rhie JW, J. Korean Med. Assoc., 57, 609 (2014)
- Bouten PJM, Zonjee M, Bender J, Yauw STK, Prog Polym Sci., 39, 1375 (2014)
- Lee YH, Polym. Sci. Technol., 25(5), 402 (2014)
- Jiang T, James R, Kumbar SG, Laurencin CT, Natural and Synthetic Biomedical Polymers, pp91 2014.
- Bakshi PS, Selvakumar D, Kadirvelu K, Kumar NS, Int. J. Biol. Macromol., 150, 1072 (2020)
- Jayakumar R, Prabaharan M, Kumar PTS, Nair SV, Tamura H, Biotechnol. Adv., 29, 322 (2011)
- Anitha A, Sowmya S, Kumar PTS, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R, Prog. Polym. Sci., 39, 1644 (2014)
- Cho IS, Oh HM, Cho MO, Jang BS, Cho JK, Park KH, Kang SW, Huh KM, Biomater. Res., 22, 249 (2018)
- Park MK, Li MX, Yeo I, Jung J, Yoon BI, Joung YK, Carbohydr. Polym., 248, 116760 (2020)
- Ryu JH, Hong S, Lee H, Acta Biomater., 27, 101 (2015)
- Cho IS, Park CG, Huh BK, Cho MO, Khatun Z, Li ZZ, Kang SW, Bin Choy Y, Huh KM, Acta Biomater., 39, 124 (2016)
- Cho IS, Cho MO, Li Z, Nurunnabi M, Park SY, Kang SW, Huh KM, Carbohydr. Polym., 144, 59 (2016)
- Ejima H, Richardson JJ, Liang K, Best JP, van Koeverden MP, Such GK, Cui JW, Caruso F, Science, 341(6142), 154 (2013)
- Wang Y, Park JP, Hong SH, Lee H, Adv Mater., 28, 9961 (2016)
- Oh DX, Kim S, Lee D, Hwang DS, Acta Biomater., 20, 104 (2015)
- Sanandiya ND, Lee S, Rho S, Lee H, Kim IS, Hwang DS, Carbohydr. Polym., 208, 77 (2019)
- Cho JH, Lee JS, Shin J, Jeon EJ, An S, Choi YS, Cho SW, Adv Funct. Mater., 28, 170524 (2018)
- Pasanphan W, Chirachanchai S, Carbohydr. Polym., 72, 169 (2008)
- Pasanphan W, Buettner GR, Chirachanchai S, J. Appl. Polym. Sci., 109(1), 38 (2008)
- Xie MH, Hu B, Wang Y, Zeng XX, J. Agr. Food Chem., 62, 9128 (2014)
- Miao TX, Fenn SL, Charron PN, Oldinski RA, Biomacromolecules, 16(12), 3740 (2015)
- Qu J, Zhao X, Liang YP, zhang TL, Ma PX, Guo BL, Biomaterials, 183, 185 (2018)
- Park E, Lee J, Huh KM, Lee SH, Lee H, Adv. Healthc. Mater., 8, 190027 (2019)
- Zhu NQ, Wang MF, Wei GJ, Lin JK, Yang CS, Ho CT, Food Chem., 73, 345 (2001)