화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.3, 372-379, May, 2021
조직접착성 소재로서의 갈릭산 함유 글리콜 키토산 유도체의 제조 및 특성 평가
Synthesis and Characterization of Gallic Acid Conjugated Glycol Chitosans for Tissue Adhesive Applications
E-mail:, ,
초록
본 연구에서는 생체적합성이 우수한 글리콜 키토산에 생기능성 분자인 갈릭산(GA)을 화학적으로 결합하고, 자가-가교(self-crosslinking) 및 자가-치유(self-healing)가 가능한 갈릭산 함유 글리콜 키토산(GA-GC) 하이드로젤을 제조하였으며, 조직접착성 소재로의 응용 가능성을 평가하였다. GA의 반응 몰비를 조절하여 GA 함량이 서로 다른 일련의 GA-GC 유도체들을 합성하고, GA의 파이로갈롤기에 의한 자가-가교 반응을 통해 하이드로젤을 제조하였다. GA-GC 하이드로젤의 자가-치유 능력을 점탄성 분석을 통해 확인하였고, 하이드로젤의 GA 함량이 증가됨에 따라 압축강도와 조직 접착강도가 증가하는 것을 관찰하였다. 생분해성과 낮은 세포독성을 보임으로써 GA-GC 하이드로젤은 조직접착성 생체재료로 유용하게 응용될 수 있을 것으로 기대된다.
In this study, we developed self-crosslinkable and self-healing hydrogels by conjugating biocompatible and biodegradable glycol chitosan (GC) with biofunctional gallic acid (GA) and evaluated their potential application as a new tissue adhesive biomaterial. A series of GA-GC derivatives with different GA content were synthesized by varying the feed molar ratio of GA and their hydrogels were prepared via self-crosslinking reaction between pyrogallol groups of GA. The self-healing ability of GA-GC hydrogels was confirmed by rheological analysis, and their mechanical strength and tissue adhesion strength were observed to increase as the GA content of the hydrogels increased. The GA-GC hydrogels with biodegradability and low cytotoxicity would be useful as new tissue adhesive biomaterials.
  1. Bao ZX, Gao MH, Sun Y, Nian R, Xian M, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 111, 110796 (2020)
  2. Zhao PC, Yin C, Zhang Y, Chen XY, Yang BG, Xia J, Bian LM, J. Mater. Chem. A, 8, 12463 (2020)
  3. Dunn CJ, Goa KL, Drugs, 58, 863 (1999)
  4. Spotnitz WD, Am. J. Surg., 182, 8S (2001)
  5. Carvalho MVH, Marchi E, Fruchi AJ, Dias BVB, Pinto CL, dos Santos GR, Acencio MMP, Clinics, 72, 624 (2017)
  6. Han HH, Rhie JW, J. Korean Med. Assoc., 57, 609 (2014)
  7. Bouten PJM, Zonjee M, Bender J, Yauw STK, Prog Polym Sci., 39, 1375 (2014)
  8. Lee YH, Polym. Sci. Technol., 25(5), 402 (2014)
  9. Jiang T, James R, Kumbar SG, Laurencin CT, Natural and Synthetic Biomedical Polymers, pp91 2014.
  10. Bakshi PS, Selvakumar D, Kadirvelu K, Kumar NS, Int. J. Biol. Macromol., 150, 1072 (2020)
  11. Jayakumar R, Prabaharan M, Kumar PTS, Nair SV, Tamura H, Biotechnol. Adv., 29, 322 (2011)
  12. Anitha A, Sowmya S, Kumar PTS, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R, Prog. Polym. Sci., 39, 1644 (2014)
  13. Cho IS, Oh HM, Cho MO, Jang BS, Cho JK, Park KH, Kang SW, Huh KM, Biomater. Res., 22, 249 (2018)
  14. Park MK, Li MX, Yeo I, Jung J, Yoon BI, Joung YK, Carbohydr. Polym., 248, 116760 (2020)
  15. Ryu JH, Hong S, Lee H, Acta Biomater., 27, 101 (2015)
  16. Cho IS, Park CG, Huh BK, Cho MO, Khatun Z, Li ZZ, Kang SW, Bin Choy Y, Huh KM, Acta Biomater., 39, 124 (2016)
  17. Cho IS, Cho MO, Li Z, Nurunnabi M, Park SY, Kang SW, Huh KM, Carbohydr. Polym., 144, 59 (2016)
  18. Ejima H, Richardson JJ, Liang K, Best JP, van Koeverden MP, Such GK, Cui JW, Caruso F, Science, 341(6142), 154 (2013)
  19. Wang Y, Park JP, Hong SH, Lee H, Adv Mater., 28, 9961 (2016)
  20. Oh DX, Kim S, Lee D, Hwang DS, Acta Biomater., 20, 104 (2015)
  21. Sanandiya ND, Lee S, Rho S, Lee H, Kim IS, Hwang DS, Carbohydr. Polym., 208, 77 (2019)
  22. Cho JH, Lee JS, Shin J, Jeon EJ, An S, Choi YS, Cho SW, Adv Funct. Mater., 28, 170524 (2018)
  23. Pasanphan W, Chirachanchai S, Carbohydr. Polym., 72, 169 (2008)
  24. Pasanphan W, Buettner GR, Chirachanchai S, J. Appl. Polym. Sci., 109(1), 38 (2008)
  25. Xie MH, Hu B, Wang Y, Zeng XX, J. Agr. Food Chem., 62, 9128 (2014)
  26. Miao TX, Fenn SL, Charron PN, Oldinski RA, Biomacromolecules, 16(12), 3740 (2015)
  27. Qu J, Zhao X, Liang YP, zhang TL, Ma PX, Guo BL, Biomaterials, 183, 185 (2018)
  28. Park E, Lee J, Huh KM, Lee SH, Lee H, Adv. Healthc. Mater., 8, 190027 (2019)
  29. Zhu NQ, Wang MF, Wei GJ, Lin JK, Yang CS, Ho CT, Food Chem., 73, 345 (2001)