Polymer(Korea), Vol.45, No.3, 437-442, May, 2021
스핀코팅 시 가속 시간이 폴리티오펜 박막의 결정성장과 전기적 특성에 미치는 영향
Effect of Acceleration Time on the Crystal Growth and Electrical Properties in Polythiophene Thin Film during Spin Coating Process
E-mail:
초록
본 연구에서는 poly(3-hexylthiophene)(P3HT)을 양용매인 클로로포름과 디클로로벤젠에 각각 용해한 후 스핀코팅 시 회전 속도에 도달하는 시간을 달리하여 박막을 제조하였다. 회전 속도에 도달하는 시간을 1초부터 5초로 다양하게 조절하여 박막제조 시 초기에 형성되는 P3HT 결정 생성량을 증가시켰다. 최종 회전 속도에 도달하는 시간이 1초인 경우에는 초기에 형성된 결정 생성량이 적어서 낮은 결정성의 박막이 제조되었으나 가속 시간이 증가함에 따라 높은 결정화도를 가진 박막이 제조되었다. 가속도뿐만 아니라 용매의 비점에 따라서 분자들의 결정성장이 달라지는 것을 관찰하였다. 그 결과 스핀코팅 시 최적의 공정조건을 선택하여 고분자 박막의 결정화도와 전기적 성능을 획기적으로 향상시킬 수 있었다.
In this study, a thin film was prepared by dissolving poly(3-hexylthiophene) (P3HT) in chloroform and dichlorobenzene, which are good solvents, respectively, and varying the time to reach the rotational rate during spin coating. The time to reach the rotational rate was variously adjusted from 1 to 5 s to increase the amount of P3HT crystals formed at the early stage of thin film fabrication. When the time to reach the final rotational rate was 1 s, a thin film with low crystallinity was produced. The number of crystals formed initially was small, but a thin film with high crystallinity was produced as the acceleration time increased. It was observed that the crystal growth of the molecules was changed depending on the boiling point of the solvent and the acceleration time. As a result, the polymer thin film’s crystallinity and electrical performance could be dramatically improved by optimum process conditions during spin coating.
- Kim SJ, Kim H, Ahn J, Hwang DK, Ju H, Park MC, Yang H, Kim SH, Jang HW, Lim JA, Adv. Mater., 31, 190056 (2019)
- Sirringhaus H, Adv. Mater., 26(9), 1319 (2014)
- Tang X, Kwon HJ, Hong J, Ye H, Wang R, Yun DJ, Park CE, Jeong YJ, Lee HS, Kim SH, ACS Appl. Mater. Interfaces, 12, 33999 (2020)
- Chen HL, Zhang WN, Li ML, He G, Guo XF, Chem. Rev., 120(5), 2879 (2020)
- Mizukami M, Oku S, Cho SI, Tatetsu M, Abiko M, Mamada M, Sakanoue T, Suzuri Y, Kido J, Tokito SA, IEEE Electron Device Lett., 36, 841 (2015)
- Na JY, Kang B, Sin DH, Cho K, Park YD, Sci. Rep., 5, 13288 (2015)
- Chang M, Lim GT, Park B, Reichmanis E, Polymers, 9, 23 (2017)
- Petoukhoff CE, Shen Z, Jain M, Chang A, O’Carroll DM, J. Photonics Energy, 5, 057002 (2015)
- Gargi D, Kline RJ, Delongchamp DM, Fischer DA, Toney MF, O’Connor BT, J. Phys. Chem. C, 117, 17421 (2013)
- Dong BX, Amonoo JA, Purdum GE, Loo YL, Green PF, ACS Appl. Mater. Interfaces, 8, 31144 (2016)
- Schulz GL, Ludwigs S, Adv. Funct. Mater., 27, 160308 (2017)
- Han S, Yu X, Shi W, Zhang X, Yu J, Org. Electron., 27, 160 (2015)
- Sanda S, Nagase T, Kobayashi T, Takimiya K, Sadamitsu Y, Naito H, Org. Electron., 58, 306 (2018)
- Kwon EH, Kim GW, Kim M, Park YD, ACS Appl. Polym. Mater., 2, 2980 (2020)
- Jeon GG, Lee M, Nam J, Park W, Yang M, Choi JH, Yoon DK, Lee E, Kim B, Kim JH, ACS Appl. Mater. Interfaces, 10, 29824 (2018)
- Morgan B, Dadmun MD, Soft Matter, 13, 2773 (2017)
- Kim YS, Lee Y, Kim JK, Seo EO, Lee EW, Lee W, Han SH, Lee SH, Curr. Appl. Phys., 10(4), 985 (2010)
- Kwon EH, Jang YJ, Kim GW, Kim M, Park YD, RSC Adv., 9, 6356 (2019)
- Na JY, Kim M, Park YD, J. Phys. Chem. C, 121, 13930 (2017)
- Hansen CM, Hansen Solubility Parameters - A User’s Handbook; 2nd ed.; CRC Press: Boca Raton, FL, 2007.
- Birnie DP, Hau SK, Kamber DS, Kaz DM, J. Mater. Sci. Mater. Electron., 16, 715 (2005)
- Lee JH, Seo Y, Park YD, Anthony JE, Kwak DH, Lim JA, Ko S, Jang HW, Cho K, Lee WH, Sci. Rep., 9, 21 (2019)
- Na JY, Kang B, Lee SG, Cho K, Park YD, ACS Appl. Mater. Interfaces, 9, 9871 (2017)