화학공학소재연구정보센터
Macromolecular Research, Vol.29, No.5, 331-341, May, 2021
Synthesis, Characterisation and Mesophase Transition of Hexasubstituted Cyclotriphosphazene Molecules with Schiff Base and Azo Linking Units and Determination of Their Fire Retardant Properties
E-mail:,
Hexakis(oxy-4-benzaldehyde)cyclotriphosphazene, 1 was successfully synthesised by nucleophilic substitution reaction between hexachlorocyclotriphosphazene, HCCP and 4-hydroxybenzaldehyde. Azotization reaction of p-nitroaniline with phenol formed 4-(4-nitrophenylazo)phenol, 2 which was alkykated with heptyl, nonyl, decyl, dodecyl and tetradecylbromide to give a series of nitro compounds, 3a-e. Reduction of 3a-e and 2 formed the subsequent amine compounds 4a-f, 4-(4-alkyloxyphenylazo)phenylamine. Another similar reaction of protected aniline with a series of substituted aniline formed a series of compounds 4g-i. A series of hexasubstituted cyclotriphosphazene molecules containing Schiff base and azo linking units, 5a-i were synthesised from the reaction between intermediates 1 and 4a-i. Further reduction of compound 5i afford compound 5j with amino terminal end. All the synthesised intermediates and compounds were characterised using Fourier Transform Infrared spectroscopy (FT-IR), 1H and 13C Nuclear Magnetic Resonance spectroscopy (NMR) and CHN elemental analysis. The liquid crystal properties of intermediates and final compounds were determined using Polarised Optical Microscope (POM) and their phase transitions confirmed using Differential Scanning Calorimetry (DSC). Only intermediates 3a-e showed mesophase of smectic A and compounds 5a-e with alkoxy chain were mesogenic with smectic A and nematic phases. In addition, compound 5h exhibited nematic phase only. However, all the other intermediates and compounds were found to be non-mesogenic. Furthermore, the fire retardant of final compounds were determined using Limiting Oxygen Index (LOI) testing. The LOI value of pure polyester resin was increased from 22.53 to 24.71% when incorporated with 1 wt% of HCCP. Moreover, all the final compounds showed a positive in LOI value the highest LOI value was belonged to compound 5i with 27.90%.
  1. Allcock HR, Kugel RL, J. Am. Chem. Soc., 87, 4216 (1965)
  2. Allcock HR, Chem. Rev., 72, 315 (1972)
  3. Allcock HR, Phosphorus-Nitrogen Compounds, Academic Press, New York, 1972.
  4. Meier G, Sackmann E, Grabmaier JG, Applications of Liquid Crystals, Springer, New York, 1975.
  5. Shenderovskyi VA, Trokhymchuk AD, Lisetski LN, Kozhushko BV, Gvozdovskyy IA, J. Mol. Liq., 1 (2018).
  6. Chandrasekhar S, Liquid Crystals, 2nd ed., Cambridge University Press, Cambridge, 1992.
  7. Wang X, Zhou Q, Zhou Q, Liquid Crystalline Polymers, World Scientific Publishing Co. Pte. Ltd, Singapore, 2004.
  8. Jamain Z, Khairuddean M, Loh L, Abdul Manaff NL, Makmud MZH, Malays. J. Chem., 22, 125 (2020)
  9. Allcock HR, Klingenberg EH, Macromolecules, 28 (1995).
  10. Moriya K, Mizusaki H, Kato M, Yano S, Kajiwara M, Liq. Cryst., 18, 795 (1995)
  11. Levelut AM, Moriya K, Liq. Cryst., 20, 119 (1996)
  12. Moriya K, Suzuki T, Mizusaki H, Yano S, Kajiwara M, Chem. Lett., 1001 (1997).
  13. Moriya K, Suzuki T, Yano S, Kajiwara M, Liq. Cryst., 19, 711 (1995)
  14. Moriya K, Ikematsu H, Nakagawa S, Yano S, Negita K, Jpn. J. Appl. Phys., 40, 340 (2001)
  15. Gleria M, Jaeger RD, J. Inorg. Org. Polym., 11, 1 (2001)
  16. Allcock HR, Phosphorus Sulfur Silicon Relat. Elem., 179, 661 (2004)
  17. Shi L, Ge H, Tan S, Li H, Song Y, Zhu H, Tan R, Eur. J. Medic. Chem., 1 (2006).
  18. Lyon RE, Speite L, Walters RN, Crowley S, Fire Mater., 27, 195 (2003)
  19. Levchik GF, Grigoriev YV, Balabanovich AI, Levchik SV, Polym. Int., 49, 1095 (2000)
  20. Gu JW, Zhang GC, Dong SL, Zhang QY, Kong J, Surf. Coat. Technol., 201, 7835 (2007)
  21. Moriya K, Suzuki T, Kawanishi Y, Masuda T, Mizusaki H, Nakagawa S, Ikematsu H, Mizuno K, Yano S, Kajiwara M, Appl. Organomet. Chem., 12, 771 (1998)
  22. Rong Y, Bo W, Xiaofeng H, Binbin M, Jinchun L, Polym. Degrad. Stabil., 144, 62 (2017)
  23. Kumar D, Fohlen GM, Parker JA, J. Polym. Sci. Polym. Chem. Ed., 22, 927 (1984)
  24. Gouri ME, Bachiri AE, Hegazi SE, Ziraoui R, Rafik M, Harfi AE, Polym. Degrad. Stabil., 94, 2101 (2009)
  25. Chang JY, Ji HJ, Han MJ, Rhee SB, Cheong S, Yoon M, Macromolecules, 27(6), 1376 (1994)
  26. Gouri ME, Bachiri AE, Hegazi SE, Ziraoui R, Rafik M, Harfi AE, J. Mater. Env. Sci., 2, 319 (2011)
  27. Shin YJ, Ham YR, Kim SH, Lee DH, Kim SB, Park CS, Yoo YM, Kim JG, Kwon SH, Shin JS, J. Ind. Eng. Chem., 16(3), 364 (2010)
  28. Fadeeva VP, Tikhova VD, Nikulicheva ON, J. Analyt. Chem., 63, 1094 (2008)
  29. Gray GW, Molecular Structure and the Properties of Liquid Crystals, Academic Press, London, 1962.
  30. Thaker BT, Patel PH, Vansadiya AD, Kanojiya JB, Mol. Cryst. Liq. Cryst., 515, 135 (2009)
  31. Jamain Z, Omar NF, Khairuddean M, Molecules, 25, 3780 (2020)
  32. Jamain Z, Khairuddean M, Guan-Seng T, RSC Adv., 10, 28918 (2020)
  33. Sharma VS, Patel RB, Mol. Cryst. Liq. Cryst., 643(1), 62 (2017)
  34. Galewski Z, Mol. Cryst. Liq. Cryst., 249, 43 (1994)
  35. Galewski Z, Coles HJ, J. Mol. Liq., 79, 77 (1999)
  36. Sakagami S, Nakamizo M, Bull. Chem. Soc. Jpn., 53, 265 (1980)
  37. Kelker H, Hatz R, Handbook of Liquid Crystals, Florida, 917 Seiten, 438 Abbildungen, 48 Tabellen, Preis DM 420.0, 1980.
  38. Zahra S, Nasrin J, Shahla S, Carbohydr. Polym., 118, 183 (2015)
  39. Shuang Y, Jun W, Siqi H, Junpeng W, Yushan T, Polym. Degrad. Stabil., 126, 9 (2016)
  40. Rong Y, Wentian H, Liang X, Yan S, Jinchun L, Polym. Degrad. Stabil., 122, 102 (2015)