화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.33, No.2, 93-104, May, 2021
MHD micropumping of viscoelastic fluids: an analytical solution
E-mail:
An analytical solution is found for examining the effect of a fluid’s elasticity on the performance of MHD micropumps. The test fluid is assumed to be an incompressible viscoelastic fluid obeying the Oldroyd-B model. The flow generated by the Lorentz force is assumed to be laminar, unidirectional, and two-dimensional. The effects of relaxation and retardation times are investigated on the volumetric flow rate. It is concluded that by a decrease in the relaxation time, the pulsatile nature of micropump can be eliminated in its transient phase. At sufficiently low relaxation times, the flow is predicted to monotonically reach its steady value at a much shorter time. By an increase in the retardation time, the pulsatile nature of micropump in its transient phase can also be eliminated and the flow will be more continuous in its steady conditions.
  1. Affanni A, Chiorboli G, Instrumentation and Measurement Technology Conference, 2006.
  2. Aguilar ZP, Arumugam P, Fritsch I, J. Electroanal. Chem., 591(2), 201 (2006)
  3. Arumugam PU, Fakunle ES, Anderson EC, Evans SR, King KG, Aguilar ZP, Carter CS, Fritsch I, J. Electrochem. Soc., 153(12), E185 (2006)
  4. Bau HH, Zhu J, Qian S, Xiang Y, Sens. Actuators B-Chem., 88, 205 (2003)
  5. Bird RB, Armstrong RC, Hassager O, Dynamics of polymeric, by John Wiley & Sons Inc. 1987.
  6. Carnahan B, Luther HA, Wilkes JO, Applied Numerical Methods, John Wiley & Sons, New York 1969.
  7. Derakhshan S, Yazdani K, J. Mech., 32, 55 (2016)
  8. Duwairi HM, Abdullah M, Microsyst. Technol., 13, 33 (2007)
  9. Eijkel J, Dalton C, Hayden C, Burt J, Manz A, Sens. Actuator, 92, 215 (2003)
  10. Elmaboud YA, Abdelsalam SI, Phys. Scr., 94, 115209 (2019)
  11. Gao C, Jian Y, J. Mol. Liq., 211, 803 (2015)
  12. Ho JE, J. Mar. Sci. Technol., 15, 315 (2007)
  13. Homsy AS, Koster S, Eijkel JCT, Ven der Berg A, Lucklum F, Verpoorte E, de Rooij NF, Lab Chip, 5, 466 (2007)
  14. Huang L, Wang W, Murphy MC, Proc. SPIE 3680, Design, Test, and Microfabrication of MEMS and MOEMS, 379 1999.
  15. Huang L, Wang W, Murphy MC, Lian K, Ling ZG, Microsyst. Technol., 6, 235 (2000)
  16. Ito K, Takahashi T, Fujino, T, Ishikawa M, Journal of International Council on Electrical Engineering, 4, 220 2014.
  17. James DF, Fluids B, Annu. Rev. Fluid Mech., 41, 129 (2009)
  18. Jang J, Lee SS, Sens. Actuators, 80, 84 (2000)
  19. Kim CT, Lee J, Kwon S, Chem. Eng. Sci., 117, 210 (2014)
  20. Laser DJ, Santiago JG, J. Micromech. Microeng., 14, R35 (2004)
  21. Lemoff AV, Lee AP, Sens. Actuators B-Chem., 63, 178 (2000)
  22. Lim S, Choi B, J. Mech. Sci. Technol., 23, 739 (2009)
  23. Moghaddam S, Int. J. Appl. Electromagn. Mech., 40, 309 (2012)
  24. Moghaddam S, Korea-Aust. Rheol. J., 25(1), 29 (2013)
  25. Moghaddam S, SN Appl. Sci., 1, 1609 (2019)
  26. Nguyen N, Huang X, Chuan TK, ASME. J. Fluids Eng., 124, 384 (2002)
  27. Ramos A, Microfluidic Technologies for Miniaturized Analysis Systems, 2007.
  28. Renardy M, Rogers RC, An introduction to partial differential equations, 2004.
  29. Shahidian A, Ghassemi M, Khorasanizade S, Abdollahzade M, Ahmadi G, IEEE Trans. Magn., 45, 2667 (2009)
  30. Si D, Jian Y, J. Phys. D-Appl. Phys., 48, 085501 (2015)
  31. Wang PJ, Chang CY, Chang ML, Biosens. Bioelectron., 20, 115 (2004)
  32. Yurish S, Advances in Sensors: Reviews, 6, 2018.
  33. Zhao G, Jian Y, Chang L, Buren M, J. Magn. Magn. Mater., 387, 111 (2015)
  34. Zhong J, Yi M, Bau H, Sens. Actuators, 96, 59 (2002)