화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.6, 1117-1128, June, 2021
Recent progress on Al distribution over zeolite frameworks:Linking theories and experiments
E-mail:,
The location and distribution of aluminum in zeolites is considered important in determining various properties, such as acidity and reactivity. Controlling the placement of aluminum substitution has therefore been of significant interest, and a number of studies have been conducted, including synthesis methods using either different organic structure-directing agents (OSDAs) or cationic species, and the application of dealumination as post-processing. In addition to experimental developments, computational methods have emerged as a useful tool for analyzing the effects of different types of aluminum siting on catalytic properties, especially by incorporating statistical methods. A review of recent developments and findings related to aluminum siting and its effects is presented in this work. Analysis of the thermodynamic distribution of aluminum, as well as synthetically altered distribution in different zeolite frameworks, has been discussed. Computational studies have revealed that catalytic properties are sensitive to adsorbate-dependent properties such as the size of rings and voids for the residence of aluminum, the relative distribution of acid sites, and the adsorption properties of molecules in different framework motifs. Along with the atomic scale evaluation of synthetic treatments in positioning the aluminum, cases of instrumental analysis methods and their verification with simulations is discussed, demonstrating how theories have complemented and, sometimes modified, experimental perspectives. Lastly, recent progress in incorporating machine learning techiques, its application to zeolites, and directions for future work are introduced.
  1. Breck DW, in Molecular sieve zeolites-I, ACS Publications, Washington D.C. (1971).
  2. Baerlocher C, McCusker LB, Database of zeolites, http://www.iza-structure.org/databases/ (accessed November 4, 2020).C. Baerlocher and L. B. McCusker, Database of zeolites, http:// www.iza-structure.org/databases/ (accessed November 4, 2020).C. Baerlocher and L. B. McCusker, Database of zeolites, http:// www.iza-structure.org/databases/ (accessed November 4, 2020).C. Baerlocher and L. B. McCusker, Database of zeolites, http://www.iza-structure.org/databases/ (accessed November 4, 2020).
  3. Zhang Q, Yu J, Corma A, Adv. Mater., 2002927, 1 (2020)
  4. Chu Y, Han B, Zheng A, Deng F, J. Phys. Chem. C., 116, 12687 (2012)
  5. Huang Y, Dong X, Li M, Yu Y, Catal. Sci. Technol., 5, 1093 (2015)
  6. Brandle M, Sauer J, J. Am. Chem. Soc., 120(7), 1556 (1998)
  7. McQuarrie DA, Statistical Mechanics, 1st Ed., Harper & Row, New York (1973).
  8. Cheung P, Bhan A, Sunley GJ, Iglesia E, Angew. Chem.-Int. Edit., 45, 1617 (2006)
  9. Cheung P, Bhan A, Sunley GJ, Law DJ, Iglesia E, J. Catal., 245(1), 110 (2007)
  10. Bhan A, Allian AD, Sunley GJ, Law DJ, Iglesia E, J. Am. Chem. Soc., 129(16), 4919 (2007)
  11. Boronat M, Martinez-Sanchez C, Law D, Corma A, J. Am. Chem. Soc., 130(48), 16316 (2008)
  12. Li Y, Yu M, Cai K, Wang M, Lv J, Howe RF, Huang S, Ma X, Phys. Chem. Chem. Phys., 22, 11374 (2020)
  13. Jung HS, Ham H, Bae JW, Catal. Today, 339, 79 (2020)
  14. Ham H, Jung HS, Kim HS, Kim J, Cho SJ, Lee WB, Park MJ, Bae JW, ACS Catal., 10, 5135 (2020)
  15. Peric J, Trgo M, Medvidovic NV, Water Res., 38, 1893 (2004)
  16. Yahiro H, Iwamoto M, Appl. Catal. A: Gen., 222(1-2), 163 (2001)
  17. Albarracin-Suazo SC, Pagan-Torres YJ, Curet-Arana MC, J. Phys. Chem. C, 123, 16164 (2019)
  18. Li H, Paolucci C, Khurana I, Wilcox LN, Goltl F, et al., Chem. Sci., 10, 2373 (2019)
  19. Loewenstein W, Am. Mineral., 39, 92 (1954)
  20. Catlow CRA, George AR, Freeman CM, Chem. Commun., 11, 1311 (1996)
  21. Pelmenschikov AG, Paukshtis EA, Edisherashvili MO, Zhidomirov GM, J. Phys. Chem., 96, 7051 (1992)
  22. Goncalves TJ, Plessow PN, Studt F, ChemCatChem., 11, 4368 (2019)
  23. Zygmunt SA, Curtiss LA, Zapol P, Iton LE, J. Phys. Chem. B, 104(9), 1944 (2000)
  24. Kessi A, Delley B, Int. J. Quantum Chem., 68, 135 (1998)
  25. Zhou DH, Bao Y, Yang MM, He N, Yang G, J. Mol. Catal. A-Chem., 244(1-2), 11 (2006)
  26. He M, Zhang J, Liu R, Sun X, Chen B, Catalysts, 7, 11 (2017)
  27. Grajciar L, Arean CO, Pulido A, Nachtigall P, Phys. Chem. Chem. Phys., 12, 1497 (2010)
  28. Zhang N, Liu C, Ma J, Li R, Jiao H, Phys. Chem. Chem. Phys., 21, 18758 (2019)
  29. Nystrom S, Hoffman A, Hibbitts D, ACS Catal., 8, 7842 (2018)
  30. Muraoka K, Chaikittisilp W, Okubo T, J. Am. Chem. Soc., 138(19), 6184 (2016)
  31. Xu B, Bordiga S, Prins R, van Bokhoven JA, Appl. Catal. A: Gen., 333(2), 245 (2007)
  32. Cui N, Guo H, Zhou J, Li L, Guo L, Hua Z, Microporous Mesoporous Mater., 306, 110411 (2020)
  33. Park S, Biligetu T, Wang Y, Nishitoba T, Kondo JN, Yokoi T, Catal. Today, 303, 64 (2018)
  34. Di Iorio JR, Nimlos CT, Gounder R, ACS Catal., 7, 6663 (2017)
  35. Sastre G, Fornes V, Corma A, J. Phys. Chem. B, 106(3), 701 (2002)
  36. Nielsen M, Hafreager A, Brogaard RY, De Wispelaere K, Falsig H, Beato P, Van Speybroeck V, Svelle S, Catal. Sci. Technol., 9, 3721 (2019)
  37. Inagaki S, Yamada N, Nishii M, Nishi Y, Kubota Y, Microporous Mesoporous Mater., 302, 110223 (2020)
  38. Koranyi TI, Nagy JB, J. Phys. Chem. B, 109(33), 15791 (2005)
  39. Stanciakova K, Ensing B, Goltl F, Bulo RE, Weckhuysen BM, Go F, Bulo RE, Weckhuysen BM, ACS Catal., 9, 5119 (2019)
  40. Sklenak S, Andrikopoulos PC, Whittleton SR, Jirglova H, Sazama P, Benco L, Bucko T, Hafner J, Sobalik Z, J. Phys. Chem. C, 117, 3958 (2013)
  41. Sklenak S, Andrikopoulos PC, Boekfa B, Jansang B, Novakova J, Benco L, Bucko T, Hafner J, Dedecek J, Sobalik Z, J. Catal., 272(2), 262 (2010)
  42. Kim S, Park G, Woo MH, Kwak G, Kim SK, ACS Catal., 9, 2880 (2019)
  43. Knott BC, Nimlos CT, Robichaud DJ, Nimlos MR, Kim S, Gounder R, ACS Catal., 8, 770 (2018)
  44. Jones AJ, Iglesia E, ACS Catal., 5, 5741 (2015)
  45. O'Malley PJ, Dwyer J, J. Phys. Chem., 92, 3005 (1988)
  46. Wang CM, Brogaard RY, Weckhuysen BM, Nørskov JK, Studt F, J. Phys. Chem. Lett., 5, 1516 (2014)
  47. Boronat M, Corma A, ACS Catal., 9, 1539 (2019)
  48. Evans JD, Coudert FX, Chem. Mater., 29, 7833 (2017)
  49. Gu Y, Liu Z, Yu C, Gu X, Xu L, Gao Y, Ma J, J. Phys. Chem. C, 124, 9314 (2020)
  50. Helfrecht BA, Semino R, Pireddu G, Auerbach SM, Ceriotti M, J. Chem. Phys., 151, 154112 (2019)
  51. Ma X, Xin H, Phys. Rev. Lett., 118, 1 (2017)
  52. Calle-Vallejo F, Martinez JI, Garcia-Lastra JM, Sautet P, Loffreda D, Angew. Chem.-Int. Edit., 53, 8316 (2014)
  53. Xie T, Grossman JC, Phys. Rev. Lett., 120, 145301 (2018)
  54. Gu GH, Noh J, Kim S, Back S, Ulissi Z, Jung Y, J. Phys. Chem. Lett., 11, 44 (2020)
  55. Back S, Yoon J, Tian N, Zhong W, Tran K, Ulissi ZW, J. Phys. Chem. Lett., 10, 4401 (2019)
  56. De S, Bartok AP, Csanyi G, Ceriotti M, Phys. Chem. Chem. Phys., 18, 13754 (2016)
  57. Kajita S, Ohba N, Jinnouchi R, Asahi R, Sci. Rep., 7, 1 (2017)
  58. Yoon J, Ulissi ZW, Phys. Rev. Lett., 125, 173001 (2020)