Korean Journal of Chemical Engineering, Vol.38, No.6, 1240-1247, June, 2021
The role of contact time and input amount of 1,1,1,2-tetrafluoroethane (HFC-134a) on the catalyst lifetime and product selectivity in catalytic pyrolysis
E-mail:
During catalytic pyrolysis of HFC-134a over γ-alumina, the formation of HF and coke causes catalyst deactivation. Catalyst deactivation and product selectivity depend on the contact time during catalytic pyrolysis of HFC-134a as reported in this paper. γ-Alumina calcined at 650 °C was used as the catalyst due to its higher quantity of acidic sites and larger surface area, which are crucial for catalytic pyrolysis. X-ray diffraction (XRD), scanning electron microscope- energy dispersive X-ray spectroscopy (SEM-EDS), and thermogravimetric analysis (TGA) of the catalysts were performed to determine the influence of contact time and flow rate of HFC-134a. 2mL/min of HFC-134a balanced with nitrogen to 25, 50, 100, and 200mL/min total flow rates was studied at 600 °C. 200mL/min showed a 9.4 h catalyst lifetime with a small number of by-products. Shorter contact time between HFC-134a and HF with the catalyst was found to be the key to the longer lifetime of the catalyst. The catalyst lifetime was decreased with an increase in the HFC-134a input amount. Among 2, 4, and 6mL/min input of HFC-134a, 2mL/min showed the longest catalytic activity followed by 4 and 6mL/min, respectively. Conversion of γ-alumina into AlF3 and deposition of coke were responsible for the deactivation.
- Wuebbles DJ, Easterling DR, Hayhoe K, et al., U.S. Global Change Research Program, Washington, DC, USA, pp. 35 2017.
- Srinivasan J, Resonance, 13(12), 1146 (2008)
- IPCC,Geneva, Switzerland, 151 pp. 2014.
- https://ec.europa.eu/clima/policies/strategies/progress/kyoto_2_en (accessed Sep. 21, 2020).
- Velders GJM, Ravishankara AR, Miller MK, Molina MJ, Alcamo J, Daniel JS, Fahey DW, Montzka SA, Reimann S, Science, 335(6071), 922 (2012)
- Molina MJ, Rowland FS, Nature, 249, 810 (1974)
- https://ozone.unep.org/treaties/montreal-protocol (accessed Oct. 07, 2020).
- Myhre G, Shindell D, Breon FM, Collins W, et al., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 2013.
- https://eia-international.org/wp-content/uploads/EIA-Kigali-Amendment-to-the-Montreal-Protocol-FINAL.pdf (accessed Oct. 28, 2020).
- UNFCCC, CDM Methodology Booklet, 2019.
- Shin M, Jang D, Lee Y, Kim Y, Kim E, J. Mater. Cycles Waste Manag., 19(2), 754 (2017)
- Han W, Li Y, Tang H, Liu H, J. Fluor. Chem., 140, 7 (2012)
- Ohno M, Ozawa Y, Ono T, Int. J. Plasma Environ. Sci. Technol., 1(2), 159 (2007)
- Gandhi MS, Mok YS, Int. J. Environ. Sci. Technol., 12(2), 499 (2013)
- Wang YF, Lee WJ, Chen CY, Hsieh LT, Ind. Eng. Chem. Res., 38(9), 3199 (1999)
- Takita Y, Tanabe T, Ito M, Ogura M, Muraya T, Yasuda S, Nishiguchi H, Ishihara T, Ind. Eng. Chem. Res., 41(11), 2585 (2002)
- El-Bahy ZM, Ohnishi R, Ichikawa M, Appl. Catal. B: Environ., 40(2), 81 (2003)
- Iizuka A, Ishizaki H, Mizukoshi A, Noguchi M, Yamasaki A, Yanagisawa Y, Ind. Eng. Chem. Res., 50(21), 11808 (2011)
- Han TU, Yoo BS, Kim YM, Hwang, Sudibya GL, Park YK, Kim SD, Korean J. Chem. Eng., 35(8), 1611 (2018)
- Xu XF, Jeon JY, Choi MH, Kim HY, Choi WC, Park YK, J. Mol. Catal. A-Chem., 266(1-2), 131 (2007)
- Han W, Chen Y, Jin B, Liu H, Yu H, Greenh. Gases Sci. Technol., 4(1), 121 (2014)
- Song JY, Chung SH, Kim MS, Seo MG, Lee YH, Lee KY, Kim JS, J. Mol. Catal. A-Chem., 370, 50 (2013)
- Jia W, Liu M, Lang X, Hu C, Li J, Zhu Z, Catal. Sci. Technol., 5(6), 3103 (2015)
- Swamidos CMA, Sheraz M, Anus A, Jeong SJ, Park Y, Kim Y, Kim S, Catalysts, 9(3), 270 (2019)
- Jia WZ, Wu Q, Lang XW, Hu C, Zhao GQ, Li JH, Zhu ZR, Catal. Lett., 145(2), 654 (2015)
- Ryu J, No K, Kim Y, Park E, Hong S, Sci. Rep., 6, 36176 (2016)
- Higashi Y, Sakoda N, Islam MA, Takata Y, Koyama S, Akasaka R, J. Chem. Eng. Data, 63(2), 417 (2018)
- Yaghobi N, J. King Saud Univ. - Eng. Sci., 25(1), 1 (2013)
- Acikalin K, Karaca F, Bolat E, Fuel, 95, 169 (2012)
- Yang H, Coolman R, Karanjkar P, Wang H, Dornath P, Chen H, Fan W, Conner WC, Mountziaris TJ, Huber G, Green Chem., 19(1), 286 (2017)
- Li HY, Yan YJ, Ren ZW, J. Fuel Chem. Technol., 36(6), 666 (2008)
- Aho A, Tokarev A, Backman P, Kumar N, Eranen K, Hupa M, Holmbom B, Salmi T, Murzin DY, Top. Catal., 54, 941 (2011)
- Putun E, Energy, 35(7), 2761 (2010)
- Jeong SJ, Sudibya GL, Jeon J, Kim Y, Swamidoss CMA, Kim S, Catalysts, 9(11), 901 (2019)
- Tseng WJ, Chao PS, Ceram. Int., 39, 3779 (2013)
- Spurr RA, Myers H, Anal. Chem., 29, 760 (1957)
- Jeon JY, Xu XF, Choi MH, Kim HY, Park YK, Chem. Commun., 3, 1244 (2003)
- Krahl T, Kemnitz E, Catal. Sci. Technol, 7(4), 773 (2017)
- Xi Z, Liu X, Li J, Yuan J, Jia W, Liu X, Liu M, Zhu Z, ChemistrySelect, 4(15), 4506 (2019)
- Kim M, Kim Y, Youn J, Choi I, Hwang K, Kim SG, Park Y, Moon S, Lee KB, Jeon S, Catalysts, 10(7), 766 (2020)