화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.5, 301-311, May, 2021
완전 탄소 프리폼으로부터 Si 용융 침투에 의해 제조한 반응 소결 탄화규소의 치밀화에 미치는 Y2O3 첨가량의 영향
Effect of Y2O3 Additive Amount on Densification of Reaction Bonded Silicon Carbides Prepared by Si Melt Infiltration into All Carbon Preform
The conversion of all carbon preforms to dense SiC by liquid infiltration can become a low-cost and reliable method to form SiC-Si composites of complex shape and high density. Reactive sintered silicon carbide (RBSC) is prepared by covering Si powder on top of 0.5-5.0 wt% Y2O3-added carbon preforms at 1,450 and 1,500°C for 2 hours; samples are analyzed to determine densification. Reactive sintering from the Y2O3-free carbon preform causes Si to be pushed to one side and cracking defects occur. However, when prepared from the Y2O3-added carbon preform, an SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C = SiC reaction, 3C and 6H of SiC, crystalline Si, and Y2O3 phases are detected by XRD analysis without the appearance of graphite. As the content of Y2O3 in the carbon preform increases, the prepared RBSC accelerates the SiC conversion reaction, increasing the density and decreasing the pores, resulting in densification. The dense RBSC obtained by reaction sintering at 1,500 °C for 2 hours from a carbon preform with 2.0 wt% Y2O3 added has 0.20% apparent porosity and 96.9% relative density.
  1. Tsuno K, Irikado H, Hamada K, et al., 105681F, Toulouse, France, March-April (2004).
  2. Zhang Y, Zhang J, Han J, He X, Yao W, Mater. Lett., 58, 1204 (2004)
  3. Tsuno K, et al., in Proc. 6th Inter. Conf. on Space Optics, ESASP-621, Noordwijk, Netherlands, June (2006).
  4. Matson LE, et al., Advances Maui Optical and Space Surveillance Technologies Conference, Maui, HI, September (2008).
  5. Kotani M, Muta Y, Yoshimura A, Ogihara S, Imai T, et al., J. Mater. Eng. Perform., 23, 850 (2014)
  6. Baik YH, J. Korean Ceram. Soc., 25, 609 (1988)
  7. Kim YJ, Park YS, Jung YW, Song JB, Park SY, Im HJ, J. Korean Soc. Composite Mater., 25, 172 (2012)
  8. Han IS, Yang JH, Suhr DS, J. Korean Ceram. Soc., 30, 69 (1993)
  9. Seo KS, Park SW, Ha JW, Chung YJ, J. Korean Ceram. Soc., 35, 626 (1998)
  10. Seo KS, Park SW, Song HS, J. Korean Ceram. Soc., 36, 655 (1999)
  11. Cho GS, Kim GM, Park SW, J. Korean Ceram. Soc., 46, 534 (2009)
  12. Kwon CS, Oh YS, Lee SM, Han Y, Shina HI, Kim Y, Kim S, J. Korean Powder Metall. Inst., 21, 467 (2014)
  13. Wing BL, Esmonde-White F, Halloran JW, J. Am. Ceram. Soc., 99(11), 3705 (2016)
  14. Zhang NL, Yang JF, Deng YC, Wang B, Yin P, Ceram. Int., 45, 15715 (2019)
  15. Songa S, Lua B, Gaob Z, Baoc C, Ma Y, Ceram. Int., 45, 17987 (2019)
  16. Xia H, Wang J, Jin H, Shi Z, Qiao G, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 525, 283 (2010)
  17. Margiotta JC, Zhang D, Nagle DC, Feeser CE, J. Mater. Res., 23, 1237 (2008)
  18. Mukasyan AS, Lin YC, Rogachev AS, Moskovskikh DO, J. Am. Ceram. Soc., 96(1), 111 (2013)
  19. Wang Y, Tan S, Jiang D, Ceram. Int., 30, 435 (2004)
  20. Wang YX, Tan SH, Jiang DL, Carbon, 42, 1833 (2004)
  21. Kercher AK, Nagle DC, Carbon, 41, 3 (2003)
  22. Zollfrank C, Sieber H, J. Am. Ceram. Soc., 88(1), 51 (2005)
  23. Sangsuwan P, Orejas JA, Gatica JE, Tewari SN, Singh M, Ind. Eng. Chem. Res., 40(23), 5191 (2001)
  24. Favre A, Fuzellier H, Suptil J, Ceram. Int., 29, 235 (2003)
  25. Yaqnaba K, Akasaka M, Takeuchi M, Watanabe M, Narushima T, Iguchi Y, Mater. Trans., JIM, 38, 990 (1997)
  26. Sangsuwan P, Tewari SN, Gatica JE, Singh M, Dickerson R, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 30B, 933 (1999)
  27. Dezellus O, Hodaj F, Eustathopoulos N, Acta Mater., 50, 4741 (2002)
  28. Fang HT, Jeon JH, Zhu JC, Yin ZD, Carbon, 40, 2559 (2002)
  29. Song Y, Dhar S, Feldman LC, Chung G, Williams JR, J. Appl. Phys., 95, 4953 (2004)
  30. Harder B, Jacobson N, Myers D, J. Am. Ceram. Soc., 96(2), 606 (2013)
  31. Jacobson NS, J. Am. Ceram. Soc., 76, 3 (1993)
  32. Roy J, Chandra S, Das S, Maitra S, Rev. Adv. Mater. Sci., 38, 29 (2014)
  33. Ding S, Zhu S, Zeng Y, Jiang D, Ceram. Int., 32, 461 (2006)
  34. Maity A, Kalita D, Kayal N, Goswami T, Chakrabarty O, Rao PG, Ceram. Int., 38, 4701 (2012)
  35. Biswas K, Rixecker G, Aldinger F, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 374, 56 (2004)
  36. Wu L, Sun WZ, Chen YH, Lu YJ, Jiang Y, Huang ZK, J. Am. Ceram. Soc., 94(12), 4453 (2011)
  37. Noviyanto A, Yoon DH, Curr. Appl. Phys., 13(1), 287 (2013)
  38. Oh HM, Lee HK, Ceram. Int., 46, 12517 (2020)
  39. Zhu XW, Zhou Y, Hirao K, Lences Z, J. Am. Ceram. Soc., 89(11), 3331 (2006)
  40. Zhou X, Liu D, Bu H, Deng L, Liu H, Yuan P, Du P, Song H, Solid Earth Sci., 3, 16 (2018)
  41. Tong Y, Bai S, Liang X, Qin QH, Zhai J, Ceram. Int., 42, 17174 (2016)
  42. Voytovych R, Bougiouri V, Calderon NR, Narciso J, Eustathopoulos N, Acta Mater., 56, 2237 (2008)
  43. Bougiouri V, Voytovych R, Rojo-Calderon N, Narciso J, Eustathopoulos N, Scr. Mater., 54, 1875 (2006)
  44. Naikadea M, Fankhanelc B, Weberb L, Ortonad A, Stelterc M, Graulea T, J. European Ceram. Soc., 39, 735 (2019)
  45. Casado A, Torralba JM, Milenkovic S, Metals, 9, 300 (2019)