화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.3, 260-267, June, 2021
코코넛 오일로부터 유래된 카르복실레이트계 음이온 계면활성제의 합성 및 계면 특성에 관한 연구
Synthesis of Carboxylate-Based Anionic surfactant from Coconut Oil Source and Characterization of Interfacial Properties
E-mail:
초록
본 연구에서는 코코넛 오일로부터 카르복실레이트계 음이온 계면활성제 SLEC-3을 합성하였으며, 합성된 계면활성제의 구조를 FT-IR, 1H-NMR 및 13C-NMR 분석을 통하여 확인하였다. 합성한 계면활성제 SLEC-3에 대하여 임계 마이셀농도, 정적 및 동적 표면장력, 유화력, 거품 안정성 등의 계면 물성을 측정한 결과, 기존 세제 제품에서 널리 사용되는 음이온 계면활성제 SLES와 비교하여 계면 활성이 보다 우수하고 계면 에너지를 낮추는데 더 효과적이었다. 또한 SLCE-3에 대한 생분해성, 급성 경구 독성 및 급성 피부자극 시험을 실시한 결과, 저자극 및 저독성을 가지고 있기 때문에 세제 및 세정제 제품에 적용할 수 있을 것으로 판단되었다.
In this study, a carboxylate-based anionic surfactant SLEC-3 was prepared from coconut oil and the structure was elucidated by using FT-IR, 1H-NMR and 13C-NMR analysis. Measurements of interfacial properties such as critical micelle concentration, static and dynamic surface tensions, emulsification index, and foam stability have shown that SLEC-3 is better in terms of interfacial activity and more effective in lowering interfacial free energy than those of SLES, which has been widely used as a conventional anionic surfactant in the detergent industry. Biodegradability, acute oral toxicity and dermal irritation tests also revealed that SLEC-3 surfactant possesses excellent mildness and low toxicity, indicating the potential applicability in detergents and cleaner products formulation.
  1. Darapureddi PR, Nayak RR, J. Surfactants Deterg., 19, 1133 (2016)
  2. Mohamed AS, Mohamed MZ, J. Surfactants Deterg., 13, 159 (2010)
  3. Robinson VC, Bergfeld WF, Belsito DV, Hill RA, et al., Int. J. Toxicol., 29, 151S (2010)
  4. Cowan-Ellsberry C, Belanger S, Dorn P, Dyer S, McAvoy D, Sanderson H, Versteeg D, Ferrer D, Stanton K, Crit. Rev. Environ. Sci. Technol., 44, 1893 (2014)
  5. Youssef SRM, George KM, Elmasry CR, Elde A, Youssef, US Patent 2019 262 248A1 (2019).
  6. Moore AF, Int. J. Toxicol., 2, 1 (1983)
  7. Henkel M, Muller MM, Kugler JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R, Process Biochem., 47(8), 1207 (2012)
  8. Haba E, Espuny MJ, Busquets M, Manresa A, J. Appl. Microbiol., 88(3), 379 (2000)
  9. Vijayakumar S, Saravanan V, Res. J. Microbiol., 10, 181 (2015)
  10. Maag H, J. Am. Oil. Chem. Soc., 61, 259 (1984)
  11. Rang MJ, Appl. Chem. Eng., 20, 126 (2009)
  12. Lee SM, Lee JY, Yu HP, Lim JC, Colloids Surf. A: Physicochem. Eng. Asp., 536, 224 (2018)
  13. Johanssona I, Svensson M, Curr. Opin. Colloid Interface Sci., 6, 178 (2001)
  14. Liu ZY, Zhang L, Cao XL, Song XW, Jin ZQ, Zhang L, Zhao S, Energy Fuels, 27(6), 3122 (2013)
  15. Yue X, Fan X, Li Q, ChenX, Wang C, J. Mol. Liq., 227, 161 (2017)
  16. Tang W, Geng T, Jiang Y, Ju H, Wang Y, J. Surfactants Deterg., 19, 399 (2016)
  17. Zhang JC, Zhang L, Wang XC, Zhang L, Zhao S, Yu JY, J. Dispersion Sci. Technol., 32, 372 (2011)
  18. ISO 7827-1984(E), Geneva (1984).
  19. OECD 423 Guideline for testing of chemicals: Acute oral toxicity (2002).
  20. OECD/OCDE, 404 Guideline for testing of chemicals: Acute dermal irritation/corrosion (2015).
  21. Guo XW, Rong ZM, Ying XG, J. Colloid Interface Sci., 298(1), 441 (2006)
  22. Davis JT, Proceedings of the 2th International Congress of Surface Activity, Gas/Liquid and Liquid/Liquid Interface, 426-438, London (1957).
  23. Ju H, Jiang Y, Geng T, Wang Y, Zhang C, J. Mol. Liq., 225, 606 (2017)
  24. Lee SM, Lee JY, Yu HP, Lim JC, J. Ind. Eng. Chem., 38, 157 (2016)
  25. Pandey S, Bagwe RP, Shah DO, J. Colloid Interface Sci., 267(1), 160 (2003)
  26. Tamura T, Takeuchi Y, Kaneko Y, J. Colloid Interface Sci., 206(1), 112 (1998)
  27. Gao Y, Chai J, Xu J, Li G, Zhang G, J. Dispersion Sci. Technol., 27, 1059 (2006)
  28. Israelachvilli JN, Intermolecular and Surface Force, Academic Press, Ch.4, New York (1992).
  29. Yea DN, Lee SM, Jo SH, Yu HP, Lim JC, J. Surfactants Deterg., 21, 541 (2018).