화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.3, 312-319, June, 2021
향상된 광열 효과를 갖는 카르복실화된 환원 그래핀옥사이드-골드나노막대 나노복합체의 제조 및 특성 분석
Preparation and Characterization of Reduced Graphene Oxide with Carboxyl Groups-Gold Nanorod Nanocomposite with Improved Photothermal Effect
E-mail:
초록
광열 치료(photothermal therapy)란 빛을 조사하여 열을 발생시킴으로써 정상세포보다 열에 약한 비정상 세포, 특히 암세포를 선택적으로 괴사시키는 치료법이다. 본 연구에서는 광열 치료를 위한 카르복실화된 환원 그래핀옥사이드(reduced graphene oxide with carboxyl groups, CRGO)-골드나노막대(gold nanorod, AuNR) 나노복합체를 합성하고자 하였다. 이를 위해 그래핀옥사이드(graphene oxide, GO)를 고온에서 선택적으로 환원, 박리하여 CRGO를 합성하였고, AgNO3의 양에 따라 AuNR의 길이를 조절하여 880 nm에서 강한 흡광 특성을 나타내는 AuNR를 합성하여 광열 인자로 사용하였다. 일반적인 방법으로 환원된 RGO에 비해 CRGO에 상대적으로 많은 카르복실기가 결합되어 있음을 FT-IR, 열 중량 분석 및 형광 분석을 통해 확인하였다. 또한, RGO에 비해 많은 carboxyl group이 결합된 CRGO는 수용액상에서 우수한 안정성을 나타내었다. 정전기적 상호작용을 통해 합성된 CRGO-AuNR 나노복합체는 약 317 nm의 균일한 크기와 좁은 크기 분포를 보였다. CRGO-AuNR 나노복합체는 두 가지 광열 인자인 CRGO와 AuNR의 synergistic effect로 인하여 조직 투과도가 우수한 근적외선 880 nm 레이저의 조사에 의한 광열 효과가 AuNR보다 2배 이상 향상 되는 것을 확인하였다. 또한, 광열 효과에 의한 암세포 독성 분석 결과, CRGO-AuNR 나노복합체가 가장 우수한 세포 독성 특성을 나타내었다. 따라서 CRGO-AuNR 나노복합체는 안정된 분산성과 향상된 광열 효과를 기반으로 항암 광열 요법 분야에 응용될 수 있을 것으로 기대된다.
Photothermal therapy is a treatment that necrotizes selectively the abnormal cells, in particular cancer cells, which are more vulnerable to heat than normal cells, using the heat generated when irradiating light. In this study, we synthesized a reduced graphene oxide with carboxyl groups (CRGO)-gold nanorod (AuNR) nanocomposite for photothermal treatment. Graphene oxide (GO) was selectively reduced and exfoliated at high temperature to synthesize CRGO, and the length of AuNR was adjusted according to the amount of AgNO3, to synthesize AuNR with a strong absorption peak at 880 nm, as an ideal photothermal agent. It was determined through FT-IR, thermogravimetric and fluorescence analyses that more carboxyl groups were conjugated with CRGO over RGO. In addition, CRGO exhibited excellent stability in aqueous solutions compared to RGO due to the presence of carboxylic acid. The CRGO-AuNR nanocomposites fabricated by electrostatic interaction have an average size of ∼317 nm with a narrow size distribution. It was confirmed that under radiation with a near-infrared 880 nm laser which has an excellent tissue transmittance, the photothermal effect of CRGO-AuNR nanocomposites was greater than that of AuNR due to the synergistic effect of the two photothermal agents, CRGO and AuNR. Furthermore, the results of cancer cell toxicity by photothermal effect revealed that CRGO-AuNR nanocomposites showed superb cytotoxic properties. Therefore, the CRGO-AuNR nanocomposites are expected to be applied to the field of anticancer photothermal therapy based on their stable dispersibility and improved photothermal effect.
  1. Li N, Sun Q, Yu Z, Gao X, Pan W, Wan X, Tang B, ACS Nano, 12(6), 5197 (2018)
  2. Li Z, Yang Y, Yao J, Shao Z, Chen X, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 79, 123 (2017)
  3. Ma Z, Zhang J, Zhang W, Foda MF, Zhang Y, Ge L, Han H, iScience, 23(5), 101049 (2020)
  4. Cheon YA, Bae JH, Chung BG, Langmuir, 32(11), 2731 (2016)
  5. Song C, Li F, Guo X, Chen W, Dong C, Zhang J, Zhang J, Wang L, J. Mater. Chem. B, 7(12), 2001 (2019)
  6. Wang H, Chang J, Shi M, Pan W, Li N, Tang B, Angew. Chem.-Int. Edit., 58(4), 1057 (2019)
  7. Wei W, Zhang X, Zhang S, Wei G, Su Z, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 104, 109891 (2019)
  8. Xu W, Qian J, Hou G, Wang Y, Wang J, Sun T, Ji L, Suo A, Yao Y, Acta Biomater., 83, 400 (2019)
  9. Wang J, Zhu C, Han J, Han N, Xi J, Fan L, Guo R, ACS Appl. Mater. Interfaces, 10(15), 12323 (2018)
  10. Qi S, Lu L, Zhou F, Chen Y, Xu M, Chen L, Yu X, Chen WR, Zhang Z, Theranostics, 10(4), 1814 (2020)
  11. Zhang Y, Wan Q, Yang N, Small, 15(48), 190378 (2019)
  12. Liu F, Wang C, Sui X, Riaz MA, Xu M, Wei L, Chen Y, Carbon Energy, 1(2), 173 (2019)
  13. Zhang X, Wang L, Lu Q, Kaplan DLJAAM, ACS Appl. Mater. Interfaces, 10(27), 22924 (2018)
  14. Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M, J. Nanostr. Chem., 8(2), 123 (2018)
  15. Pinto AM, Goncalves IC, Magalhaes FD, Colloids Surf., 111, 188 (2013)
  16. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H, Nano Res., 1, 203 (2008)
  17. Tabish TA, Pranjol MZI, Hayat H, Rahat AA, Abdullah TM, Whatmore JL, Zhang S, Nanotechnology, 28(50), 504001 (2017)
  18. Yang K, Gong H, Shi X, Wan J, Zhang Y, Liu Z, Biomaterials, 34(11), 2787 (2013)
  19. Raslan A, Del Burgo LS, Ciriza J, Pedraz JL, Int. J. Pharm., 580, 119226 (2020)
  20. Sau TK, Murphy CJ, Langmuir, 20(15), 6414 (2004)
  21. Das MR, Sarma RK, Saikia R, Kale VS, Shelke MV, Sengupta P, Colloids Surf. B: Biointerfaces, 83, 16 (2011)
  22. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS, Carbon Energy, 49(9), 3019 (2011)
  23. Turcheniuk K, Dumych T, Bilyy R, Turcheniuk V, Bouckaert J, et al., RSC Adv., 6(2), 1600 (2016)
  24. Liu MZ, Guyot-Sionnest P, J. Phys. Chem. B, 109(47), 22192 (2005)
  25. Zheng X, Yu H, Yue S, Xing R, Zhang Q, Liu Y, Zhang B, Int. J. Electrochem. Sci., 13, 1 (2018)
  26. Cui P, Lee J, Hwang E, Lee H, Chem. Commun., 47(45), 12370 (2011)
  27. Li J, Liu D, Li B, Wang J, Han S, Liu L, Wei H, CrystEngComm, 17(3), 520 (2015)
  28. Chien CT, Li SS, Lai WJ, Yeh YC, Chen HA, Chen IS, Chen LC, Chen KH, Nemoto T, Isoda S, Angew. Chem.-Int. Edit., 51(27), 6662 (2012)
  29. Yue C, Zhang C, Alfranca G, Yang Y, Jiang X, Yang Y, Pan F, de la Fuente JM, Cui D, Theranostics, 6(4), 456 (2016)
  30. Sun Q, You Q, Pang X, Tan X, Wang J, Liu L, Guo F, Tan F, Li N, Biomaterials, 122, 188 (2017)
  31. Hou W, Xia F, Alves CS, Qian X, Yang Y, Cui D, ACS Appl. Mater. Interfaces, 8(2), 1447 (2016)
  32. SreeHarsha N, Maheshwari R, Al-Dhubiab BE, Tekade M, et al., Int. J. Nanomedicine, 14, 7419 (2019)
  33. Wang F, Sun Q, Feng B, Xu Z, Zhang J, Xu J, Lu L, Yu H, Wang M, Li Y, Adv. Healthc. Mater., 5(17), 2227 (2016)
  34. Hashemzadeh H, Raissi HJASS, Appl. Surf. Sci., 500, 144220 (2020)