Applied Chemistry for Engineering, Vol.32, No.3, 332-339, June, 2021
양이온 교환막 수전해용 산화전극 확산층의 표면 특성 제어를 통한 전기화학적 성능 개선 연구
Study on the Improvement of Electrochemical Performance by Controlling the Surface Characteristics of the Oxygen Electrode Porous Transport Layer for Proton Exchange Membrane Water Electrolysis
E-mail:
초록
최근 화석 연료 고갈과 지구 온난화를 가속화하는 온실 가스 배출에 대한 우려로 온실 가스를 배출하지 않는 청정에너지원인 수소 에너지 기술의 중요성이 강조되고 있다. 그 중 물을 전기분해하여 수소를 얻는 수전해 기술은 그린수소 기술로 궁극적인 청정 미래 에너지 자원으로 주목받고 있다. 본 연구에서는 양이온 교환막 수전해(proton exchange membrane water electrolysis, PEMWE)의 셀 구성요소 중 하나인 확산층(porous transport layer, PTL)을 sandpaper 를 이용한 표면 처리를 통하여 표면 특성을 제어하였으며, 이러한 표면 특성 개선을 통하여 과전압을 줄이고 성능과 안정성을 높이기 위한 연구를 진행하였다. Sandpaper 400, 180, 100방을 준비하여 PTL 표면을 sanding하여 처리하였으며, 처리 후 1000방의 고른 sandpaper로 표면을 매끄럽게 처리하였다. 준비된 확산층은 물접촉각을 측정하여 친수성 정도를 분석하였으며, SEM 분석을 통하여 표면 형태를 관찰하였다. 전기화학적 특성 분석을 위하여 I-V 성능곡선, 임피던스 측정을 진행하여 성능 개선 여부를 확인하였다.
Recently, due to concerns about the depletion of fossil fuels and the emission of greenhouse gases, the importance of hydrogen energy technology, which is a clean energy source that does not emit greenhouse gases, is being emphasized. Water electrolysis technology is a green hydrogen technology that obtains hydrogen by electrolyzing water and is attracting attention as one of the ultimate clean future energy resources. In this study, the surface properties of the porous transport layer (PTL), one of the cell components of the proton exchange membrane water electrolysis (PEMWE), were controlled using a sandpaper to reduce overvoltage and increase performance and stability. The surfaces of PTL were sanded using sandpapers of 400, 180, and 100 grit, and then all samples were finally treated with the sandpaper of 1000 grit. The prepared PTL was analyzed for the degree of hydrophilicity by measuring the water contact angle, and the surface shape was observed through SEM analysis. In order to analyze the electrochemical characteristics, I-V performance curves and impedance measurements were conducted.
Keywords:Proton exchange membrane water electrolysis;Porous transport layer;Surface treatment;Sandpaper
- Rehman S, Al-Hadhrami LM, Alam MM, Renew. Sust. Energ. Rev., 44, 586 (2015)
- Barbour E, Wilson IG, Radcliffe J, Ding Y, Li Y, Renew. Sust. Energ. Rev., 61, 421 (2016)
- Chen L, Zheng T, Mei S, Xue X, Liu B, Lu Q, J. Mod. Power Syst. Clean Energy, 4, 529 (2016)
- Wang J, Lu K, Ma L, Wang J, Dooner M, Miao S, Li J, Wang D, Energies, 10, 991 (2017)
- Amiryar ME, Pullen KR, Appl. Sci., 7, 286 (2017)
- Faraji F, Majazi A, Al-Haddad K, Renew. Sust. Energ. Rev., 67, 477 (2017)
- Mukherjee P, Rao V, Physica C: Supercond., 563, 67 (2019)
- Vulusala GVS, Madichetty S, Int. J. Energy Res., 42(2), 358 (2018)
- Afif A, Rahman SM, Azad AT, Zaini J, Islan MA, Azad AK, J. Energy Storage, 25, 100852 (2019)
- Kouchachvili L, Yaici W, Entchev E, J. Power Sources, 374, 237 (2018)
- Schipper F, Aurbach D, Russ. J. Electrochem., 52, 1095 (2016)
- Thackeray MM, Wolverton C, Isaacs ED, Energy Environ. Sci., 5, 7854 (2012)
- Kumar D, Rajouria SK, Kuhar SB, Kanchan DK, Solid State Ion., 312, 8 (2017)
- Xu X, Zhou D, Qin X, Lin K, Kang F, Li B, Shanmukaraj D, Rojo T, Armand M, Wang G, Nat. commun., 9, 1 (2018)
- Bates A, Mukerjee S, Lee SC, Lee DH, Park S, J. Power Sources, 249, 207 (2014)
- Zhang H, Li X, Zhang J, Redox Flow Batteries: Fundamentals and Applications, 1st ed., 33487-2742, CRC Press, Florida, USA (2017).
- Chakrabarti MH, Hajimolana S, Mjalli FS, Saleem M, Mustafa I, Arab. J. Sci. Eng., 38, 723 (2013)
- Ma J, Li Q, Kuhn M, Nakaten N, Renew. Sust. Energ. Rev., 97, 478 (2018)
- Rashid MM, Al Mesfer MK, Naseem H, Danish M, Int. J. Eng. Adv. Technol., 4, 2249 (2015)
- Zoulias E, Varkaraki E, Lymberopoulos N, Christodoulou CN, Karagiorgis GN, TCJST, 4, 41 (2004)
- Ni M, Leung MKH, Leung DYC, Int. J. Hydrog. Energy, 33(9), 2337 (2008)
- Pandiyan A, Uthayakumar A, Subrayan R, Cha SW, Moorthy SBK, Nanomater. Energ., 8, 2 (2019)
- Stempien JP, Sun Q, Chan SH, J. Power Sources, 93, 216 (2013)
- Wang M, Wang Z, Gong X, Guo Z, Renew. Sust. Energ. Rev., 29, 573 (2014)
- Brauns J, Turek T, Processes, 8, 248 (2020)
- David M, Ocampo-Martinez C, Sanchez-Pena R, J. Energy Storage, 23, 392 (2019)
- Gandia LM, Oroz R, Ursua A, Sanchis P, Dieguez PM, Energy Fuels, 21(3), 1699 (2007)
- Haug P, Kreitz B, Koj M, Turek T, Int. J. Hydrog. Energy, 42(24), 15689 (2017)
- Hughes J, Clipsham J, Chavushoglu H, Rowley-Neale S, Banks C, Renew. Sust. Energ. Rev., 139, 110709 (2021)
- Shirvanian P, van Berkel F, Electrochem. Commun., 114, 106704 (2020)
- Kumar SS, Himabindu V, Mater. Sci. Energy Technol., 2, 442 (2019)
- Lee BS, Ahn SH, Park HY, Choi I, Yoo SJ, Kim HJ, Henkensmeier D, Kim JY, Park S, Nam SW, Lee KY, Jang JH, Appl. Catal. B: Environ., 179, 285 (2015)
- Ji M, Wei Z, Energies, 2, 1057 (2009)
- Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC, Appl. Energy, 88(4), 981 (2011)
- Yuan XZ, Li H, Zhang SS, Martin J, Wang HJ, J. Power Sources, 196(22), 9107 (2011)
- Park J, Oh H, Ha T, Lee YI, Min K, Appl. Energy, 155, 866 (2015)
- Pollet BG, Catalysts, 9, 246 (2019)
- Kang Z, Yang G, Mo J, Li Y, Yu S, Cullen DA, Retterer ST, Toops TJ, Bender G, Pivovar BS, Nano Energy, 47, 434 (2018)
- Feng Q, Yuan XZ, Liu GY, Wei B, Zhang Z, Li H, Wang HJ, J. Power Sources, 366, 33 (2017)
- Khatib F, Wilberforce T, Ijaodola O, Ogungbemi E, El-Hassan Z, Durrant A, Thompson J, Olabi A, Renew. Sust. Energ. Rev., 111, 1 (2019)
- Buhler M, Holzapfel P, McLaughlin D, Thiele S, J. Electrochem. Soc., 166(14), F1070 (2019)
- Nouri-Khorasani A, Ojong ET, Smolinka T, Wilkinson DP, Int. J. Hydrog. Energy, 42, 28665 (2017)
- Lettenmeier P, Kolb S, Sata N, Fallisch A, Zielke L, Thiele S, Gago AS, Friedrich KA, Energy Environ. Sci., 10, 2521 (2017)
- Lopata J, Kang Z, Young J, Bender G, Weidner J, Shimpalee S, J. Electrochem. Soc., 167, 064507 (2020)
- Omrani R, Shabani B, Int. J. Hydrog. Energy, 42(47), 28515 (2017)
- Mo JK, Dehoff RR, Peter WH, Toops TJ, Green JB, Zhang FY, Int. J. Hydrog. Energy, 41(4), 3128 (2016)
- Majasan JO, Iacoviello F, Shearing PR, Brett DJ, Energy Procedia, 151, 111 (2018)