Journal of Industrial and Engineering Chemistry, Vol.98, 130-139, June, 2021
Low-temperature strategy for vapor phase hydrothermal synthesis of C/N/S-doped TiO2 nanorod arrays with enhanced photoelectrochemical and photocatalytic activity
E-mail:
In this study, a material with high photocatalytic activity was synthesized using ternary C/N/S-doped TiO2 nanorod array (TiO2); this was done using a practical and straightforward vapor-phase hydrothermal (VPH) method at a low temperature. The effect of C/N/S content on TiO2 morphology, optical, photocatalytic and photoelectrochemical (PCE) properties of the material was investigated by varying the quality of thiourea. C/N/S-TiO2 reduced the bonding rate of electron-hole pairs and enhances visible light absorption, photocatalytic, and PCE properties. The C/N/S doping could significantly adjust the absorption cut-off wavelengths (407-602 nm) and shorten the bandgap (3.04-2.18 eV) of TiO2. Under simulated sunlight, 8-C/N/S-TiO2 had the highest photocatalytic efficiency of 97.6% for methylene blue (MB) in 150 min with a rate constant of 0.0192 min-1, which is approximately four times that of TiO2 (0.005 min-1). The 8-C/N/S-TiO2 photoelectrode had the lowest transfer resistance for interfacial charges and highest transient photocurrent of 33.5 μA/cm2, which is five times higher than that of TiO2 (6.6 mA/ cm2). The 8-C/N/S-TiO2 exhibits the most extensive PCE behavior as a photoelectrode, and has a current density of 38.2 mA/cm2 at 2.5VRHE, which is about two times higher than TiO2 (19.1 mA/cm2). The favorable sunlight-driven photocatalytic activity is probably due to the synergistic effect of C/N/S-doping, which shifts the valence band maximum of TiO2 upward. This provides new ideas for future solar cells that can use dye-sensitized TiO2 nanorod arrays as photoanodes. It is noteworthy that VPH is a very effective strategy for fabricating semiconductors doped with multiple nonmetallic elements.
Keywords:Vapor phase hydrothermal method;Low-temperature strategy;One-step synthesis non-metal doping;C/N/S-TiO2;Photoelectrochemical activity
- Fujishima A, Zhang X, Tryk D, Surf. Sci. Rep., 63, 515 (2008)
- Nosaka Y, Nosaka AY, Chem. Rev., 117(17), 11302 (2017)
- Wang Y, Wang X, Zhang M, Fang L, Jin L, Gao J, Zhang Y, Yang B, He G, Sun Z, J. Alloy. Compd., 770, 243 (2019)
- Wei N, Lin Y, Li Z, Sun W, Zhang G, Wang M, Cui H, J. Mater. Sci. Technol., 42, 156 (2020)
- Lin HF, Li LP, Zhao ML, Huang XS, Chen XM, Li GS, Yu RC, J. Am. Chem. Soc., 134(20), 8328 (2012)
- Rengifo-Herrera JA, Pierzchala K, Sienkiewicz A, Forro L, Kiwi J, Pulgarin C, Appl. Catal. B: Environ., 88(3-4), 398 (2009)
- Ismail AA, Al-Hajji LA, Alsaidi M, Nunes BN, Bahnemann DW, J. Photochem. Photobiol. A-Chem., 407 (2021)
- Payormhorm J, Idem R, Appl. Catal. A: Gen., 590 (2020)
- Yu H, Zhang M, Wang Y, Yang H, Liu Y, Yang L, He G, Sun Z, Nanomaterials, 10 (2020)
- El-Khedr S, Abdeldayem I, Kowalska B, Catalysts, 9 (2019)
- Rizzo L, Sannino D, Vaiano V, Sacco O, Scarpa A, Pietrogiacomi D, Appl. Catal. B: Environ., 144, 369 (2014)
- Sakthivel S, Kisch H, Angew. Chem.-Int. Edit., 42, 4908 (2003)
- Sun SC, Zhang JJ, Gao P, Wang Y, Li XB, Wu TT, Wang YB, Chen YJ, Yang PP, Appl. Catal. B: Environ., 206, 168 (2017)
- Li QK, Wang B, Zheng Y, Wang Q, Wang H, Phys. Status Solidi RRL, 1, 217 (2007)
- Lin L, Lin W, Zhu YX, Zhao BY, Xie YC, Chem. Lett., 34(3), 284 (2005)
- Li D, Haneda H, Labhsetwar NK, Hishita S, Ohashi N, Chem. Phys. Lett., 401(4-6), 579 (2005)
- Yan GT, Zhang M, Hou J, Yang JJ, Mater. Chem. Phys., 129(1-2), 553 (2011)
- Huang SM, Weng CH, Tzeng JH, Huang YZ, Anotai J, Yen LT, Chang CJ, Lin YT, Chem. Eng. J., 379 (2020)
- Wang XP, Lim TT, Appl. Catal. B: Environ., 100(1-2), 355 (2010)
- Wang X, Wang XJ, Zhao JF, Song JK, Zhou LJ, Wang JY, Tong X, Chen YS, Appl. Catal. B: Environ., 206, 479 (2017)
- Li D, Ohashi N, Hishita S, Kolodiazhnyi T, Haneda H, J. Solid State Chem., 178, 3293 (2005)
- Kundu S, Sarojinijeeva P, Karthick R, Anantharaj G, Saritha G, Bera R, Anandan S, Patra A, Ragupathy P, Selvaraj M, Jeyakumar D, Pillai KV, Electrochim. Acta, 242, 337 (2017)
- Zangeneh H, Zinatizadeh AA, Zinadini S, Feyzi M, Bahnemann DW, Compos. Part B, 176 (2019)
- Zhang GS, Zhang YC, Nadagouda M, Han C, O'Shea K, El-Sheikh SM, Ismail AA, Dionysiou DD, Appl. Catal. B: Environ., 144, 614 (2014)
- Liu P, Wang Y, Zhang H, An T, Yang H, Tang Z, Cai W, Zhao H, Small, 8, 3664 (2012)
- Wang YF, Zhang M, Yu H, Zuo Y, Gao J, He G, Sun ZQ, Appl. Catal. B: Environ., 252, 174 (2019)
- Senthil Raja D, Huang CL, Chen YA, Choi Y, Lu SY, Appl. Catal. B: Environ., 279 (2020)
- Liu J, Zhang Q, Yang J, Ma H, Tade MO, Wang S, Liu J, Chem. Commun., 50, 13971 (2014)
- Zhang X, Li D, Wan J, Yu X, RSC Adv., 6, 17906 (2016)
- Li N, Chen F, Chen X, Chen Z, Qi Y, Li X, Sun X, J. Mater. Sci. Technol., 55, 152 (2020)
- Han C, Pelaez M, Likodimos V, Kontos AG, Falaras P, O'Shea K, Dionysiou DD, Appl. Catal. B: Environ., 107(1-2), 77 (2011)
- Yan XQ, Yuan K, Lu N, Xu HJ, Zhang SY, Takeuchi N, Kobayashi H, Li RH, Appl. Catal. B: Environ., 218, 20 (2017)