화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.98, 130-139, June, 2021
Low-temperature strategy for vapor phase hydrothermal synthesis of C/N/S-doped TiO2 nanorod arrays with enhanced photoelectrochemical and photocatalytic activity
E-mail:
In this study, a material with high photocatalytic activity was synthesized using ternary C/N/S-doped TiO2 nanorod array (TiO2); this was done using a practical and straightforward vapor-phase hydrothermal (VPH) method at a low temperature. The effect of C/N/S content on TiO2 morphology, optical, photocatalytic and photoelectrochemical (PCE) properties of the material was investigated by varying the quality of thiourea. C/N/S-TiO2 reduced the bonding rate of electron-hole pairs and enhances visible light absorption, photocatalytic, and PCE properties. The C/N/S doping could significantly adjust the absorption cut-off wavelengths (407-602 nm) and shorten the bandgap (3.04-2.18 eV) of TiO2. Under simulated sunlight, 8-C/N/S-TiO2 had the highest photocatalytic efficiency of 97.6% for methylene blue (MB) in 150 min with a rate constant of 0.0192 min-1, which is approximately four times that of TiO2 (0.005 min-1). The 8-C/N/S-TiO2 photoelectrode had the lowest transfer resistance for interfacial charges and highest transient photocurrent of 33.5 μA/cm2, which is five times higher than that of TiO2 (6.6 mA/ cm2). The 8-C/N/S-TiO2 exhibits the most extensive PCE behavior as a photoelectrode, and has a current density of 38.2 mA/cm2 at 2.5VRHE, which is about two times higher than TiO2 (19.1 mA/cm2). The favorable sunlight-driven photocatalytic activity is probably due to the synergistic effect of C/N/S-doping, which shifts the valence band maximum of TiO2 upward. This provides new ideas for future solar cells that can use dye-sensitized TiO2 nanorod arrays as photoanodes. It is noteworthy that VPH is a very effective strategy for fabricating semiconductors doped with multiple nonmetallic elements.
  1. Fujishima A, Zhang X, Tryk D, Surf. Sci. Rep., 63, 515 (2008)
  2. Nosaka Y, Nosaka AY, Chem. Rev., 117(17), 11302 (2017)
  3. Wang Y, Wang X, Zhang M, Fang L, Jin L, Gao J, Zhang Y, Yang B, He G, Sun Z, J. Alloy. Compd., 770, 243 (2019)
  4. Wei N, Lin Y, Li Z, Sun W, Zhang G, Wang M, Cui H, J. Mater. Sci. Technol., 42, 156 (2020)
  5. Lin HF, Li LP, Zhao ML, Huang XS, Chen XM, Li GS, Yu RC, J. Am. Chem. Soc., 134(20), 8328 (2012)
  6. Rengifo-Herrera JA, Pierzchala K, Sienkiewicz A, Forro L, Kiwi J, Pulgarin C, Appl. Catal. B: Environ., 88(3-4), 398 (2009)
  7. Ismail AA, Al-Hajji LA, Alsaidi M, Nunes BN, Bahnemann DW, J. Photochem. Photobiol. A-Chem., 407 (2021)
  8. Payormhorm J, Idem R, Appl. Catal. A: Gen., 590 (2020)
  9. Yu H, Zhang M, Wang Y, Yang H, Liu Y, Yang L, He G, Sun Z, Nanomaterials, 10 (2020)
  10. El-Khedr S, Abdeldayem I, Kowalska B, Catalysts, 9 (2019)
  11. Rizzo L, Sannino D, Vaiano V, Sacco O, Scarpa A, Pietrogiacomi D, Appl. Catal. B: Environ., 144, 369 (2014)
  12. Sakthivel S, Kisch H, Angew. Chem.-Int. Edit., 42, 4908 (2003)
  13. Sun SC, Zhang JJ, Gao P, Wang Y, Li XB, Wu TT, Wang YB, Chen YJ, Yang PP, Appl. Catal. B: Environ., 206, 168 (2017)
  14. Li QK, Wang B, Zheng Y, Wang Q, Wang H, Phys. Status Solidi RRL, 1, 217 (2007)
  15. Lin L, Lin W, Zhu YX, Zhao BY, Xie YC, Chem. Lett., 34(3), 284 (2005)
  16. Li D, Haneda H, Labhsetwar NK, Hishita S, Ohashi N, Chem. Phys. Lett., 401(4-6), 579 (2005)
  17. Yan GT, Zhang M, Hou J, Yang JJ, Mater. Chem. Phys., 129(1-2), 553 (2011)
  18. Huang SM, Weng CH, Tzeng JH, Huang YZ, Anotai J, Yen LT, Chang CJ, Lin YT, Chem. Eng. J., 379 (2020)
  19. Wang XP, Lim TT, Appl. Catal. B: Environ., 100(1-2), 355 (2010)
  20. Wang X, Wang XJ, Zhao JF, Song JK, Zhou LJ, Wang JY, Tong X, Chen YS, Appl. Catal. B: Environ., 206, 479 (2017)
  21. Li D, Ohashi N, Hishita S, Kolodiazhnyi T, Haneda H, J. Solid State Chem., 178, 3293 (2005)
  22. Kundu S, Sarojinijeeva P, Karthick R, Anantharaj G, Saritha G, Bera R, Anandan S, Patra A, Ragupathy P, Selvaraj M, Jeyakumar D, Pillai KV, Electrochim. Acta, 242, 337 (2017)
  23. Zangeneh H, Zinatizadeh AA, Zinadini S, Feyzi M, Bahnemann DW, Compos. Part B, 176 (2019)
  24. Zhang GS, Zhang YC, Nadagouda M, Han C, O'Shea K, El-Sheikh SM, Ismail AA, Dionysiou DD, Appl. Catal. B: Environ., 144, 614 (2014)
  25. Liu P, Wang Y, Zhang H, An T, Yang H, Tang Z, Cai W, Zhao H, Small, 8, 3664 (2012)
  26. Wang YF, Zhang M, Yu H, Zuo Y, Gao J, He G, Sun ZQ, Appl. Catal. B: Environ., 252, 174 (2019)
  27. Senthil Raja D, Huang CL, Chen YA, Choi Y, Lu SY, Appl. Catal. B: Environ., 279 (2020)
  28. Liu J, Zhang Q, Yang J, Ma H, Tade MO, Wang S, Liu J, Chem. Commun., 50, 13971 (2014)
  29. Zhang X, Li D, Wan J, Yu X, RSC Adv., 6, 17906 (2016)
  30. Li N, Chen F, Chen X, Chen Z, Qi Y, Li X, Sun X, J. Mater. Sci. Technol., 55, 152 (2020)
  31. Han C, Pelaez M, Likodimos V, Kontos AG, Falaras P, O'Shea K, Dionysiou DD, Appl. Catal. B: Environ., 107(1-2), 77 (2011)
  32. Yan XQ, Yuan K, Lu N, Xu HJ, Zhang SY, Takeuchi N, Kobayashi H, Li RH, Appl. Catal. B: Environ., 218, 20 (2017)