화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.98, 366-374, June, 2021
Hollow N-TiO2/MnO2 nanocomposite based yeast biomass for gaseous formaldehyde degradation under visible light
E-mail:
Synthesis of new hollow nano-composite photocatalysts based yeast biomass has been considered as a future innovation technology to control air pollution. This work demonstrates that a green, environmentally friendly, sustainable, and facile hydrothermal carbonization route of low-cost and renewable yeast biomass used to fabricate natural doping N-colloidal carbon spheres (NCSs) as a hard template for hollow N-TiO2/MnO2. The presence of natural doping nitrogen serves as a stabilizer and reductant. Hence, the yeast provided a solid frame with deposits nitrogen to form the hybrid N/yeast precursor. The resulting NCSs were obtained by hydrothermal method at 180 °C for 6 h. The characterization was performed using SEM, TEM, XRD, FTIR and N2 adsorption/desorption analysis. It was found that the findings fully retained the morphology of the yeast cells and the size of the hollow spheres was about 1.5-2 mm. The results of catalytic test showed that the new hollow nanosphere NTiO2/ MnO2 possessed a higher photodegradation activity for gaseous formaldehyde under visible irradiation than the commercial TiO2, due to their higher surface area (160 m2 g-1), hollow structure and superior reducibility. Its catalytic efficiency was attained to be more than 90%, which is about 10 times higher than that of the conventional catalyst TiO2-P25.
  1. Chen X, Paul R, Dai L, Natl. Sci. Rev., 4, 453 (2017)
  2. Huang M, Li F, Dong F, Zhang YX, Zhang LL, J. Mater. Chem. A, 3, 21380 (2015)
  3. Veerakumar P, Sangili A, Manavalan S, Thanasekaran P, Lin KC, Ind. Eng. Chem. Res., 59(14), 6347 (2020)
  4. Awad G, Mohamed EF, Appl. Catal. B: Environ., 253, 88 (2019)
  5. Khan I, Saeed K, Khan I, Arabian J. Chem., 12, 908 (2019)
  6. Wang L, Liu F, Ning Y, Bradley R, Yang C, Yong KT, Zhao B, Wu W, Sci. Rep., 10, 4306 (2020)
  7. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao SY, Antonietti M, Titirici MM, Adv. Mater., 22(45), 5202 (2010)
  8. Zhou YK, Neyerlin K, Olson TS, Pylypenko S, Bult J, Dinh HN, Gennett T, Shao ZP, O’Hayre R, Energy Environ. Sci., 3, 1437 (2010)
  9. Li XH, Antonietti M, Chem. Soc. Rev., 43, 6593 (2013)
  10. Mao H, Chen X, Huang R, Chen M, Yang R, Lan P, Zhou M, Zhang F, Yang Y, Zhou X, Sci Rep., 9, 9501 (2018)
  11. Corsi I, Winther-Nielsen M, Sethi R, Punta C, Torre CD, Libralato G, et al., Ecotoxicol. Environ. Saf., 154, 237 (2018)
  12. Wu J, Elliston A, Le Gall G, Colquhoun I, Collins SRA, Dicks J, Roberts IN, Waldron KW, Scientific Rep., 7, 14259 (2017)
  13. Du W, Wang XN, Zhan J, Sun XQ, Kang LT, Jiang FY, Zhang XY, Shao Q, Dong MY, Liu H, Murugadoss V, Guo ZH, Electrochim. Acta, 296, 907 (2019)
  14. Liu Q, Yu T, Li X, Chen Y, Campbell K, Nielsen J, Chen Y, Nat. Commun., 10, 1 (2019)
  15. Deng J, Li M, Wang Y, Green Chem., 18, 4824 (2016)
  16. Shen W, Li Z, Liu Y, Recent Pat. Chem. Eng., 1, 27 (2008)
  17. Otowa T, Nojima Y, Miyazaki T, Carbon, 35, 1315 (1997)
  18. Raymundo-Pinero E, Cazorla-Amoros D, LinaresSolano A, Carbon, 41, 1925 (2003)
  19. Bagreev A, Menendez JA, Dukhno I, Tarasenko Y, Bandosz TJ, Carbon, 42, 469 (2004)
  20. Lahaye J, Nanse G, Bagreev A, Strelko V, Carbon, 37, 585 (1999)
  21. Jurewicz K, Babe K, Ziołkowski A, Wachowska H, J. Phys. Chem. Solids, 65, 269 (2004)
  22. Li W, Chen D, Li Z, Shi Y, Wan Y, Huang J, Yang J, Zhao D, Jiang Z, Electrochem. Commun., 9, 569 (2007)
  23. Gong KP, Du F, Xia ZH, Durstock M, Dai LM, Science, 323, 760 (2009)
  24. Wang XQ, Lee JS, Zhu Q, Liu J, Wang Y, Dai S, Chem. Mater., 22, 2178 (2010)
  25. Mahurin SM, Lee JS, Wang X, Dai S, J. Membr. Sci., 368(1-2), 41 (2011)
  26. Xie Y, Fang L, Cheng H, Hu C, Zhao H, Xu J, Fang J, Lu X, Zhang J, J. Mater. Chem. A, 4, 15612 (2016)
  27. Chang YC, Lee CY, Chiu HT, ACS Appl. Mater. Interfaces, 6, 31 (2014)
  28. Sun H, Zong C, Wenhui H, Lu L, ACS Appl. Mater. Interfaces, 5, 2261 (2013)
  29. Du XY, He W, Zhang XD, Yue YZ, Liu H, Zhang XG, Min DD, Ge XX, Du Y, J. Mater. Chem., 22, 5960 (2012)
  30. Mi Y, Hu W, Dan Y, Liu Y, Mater. Lett., 62, 1194 (2008)
  31. Simsir H, Eltugral N, Karagoz S, Bioresour. Technol., 246, 82 (2017)
  32. Mohamed EF, El-Hashemy MA, Abdel-Latif NM, Shetaya WH, J. Air Waste Manage. Assoc., 65, 1413 (2015)
  33. Quintero JCC, Xu YJ, Springer, Berlin/Heidelberg, Germany, pp.416 2016.
  34. Mazierski P, Nadolna J, Lisowski W, Winiarski MJ, Gazda M, Nischk M, Klimczuk T, Zaleska-Medynska A, Catal. Today, 284, 19 (2017)
  35. Zhang HZ, Banfield JF, Chem. Rev., 114(19), 9613 (2014)
  36. Khan MM, Ansari SS, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH, J. Mater. Chem. A, 2, 637 (2014)
  37. Asahi R, Morikawa T, Irie H, Ohwaki T, Chem. Rev., 114(19), 9824 (2014)
  38. Daghrir R, Drogui P, Robert D, Ind. Eng. Chem. Res., 52(10), 3581 (2013)
  39. Zhou J, Tian G, Chen Y, Wang J, Cao X, Shi Y, Pan K, Fu H, Dalton Trans., 42, 11242 (2013)
  40. Ansari SA, Khan MM, Ansari MO, Cho MH, New J. Chem., 39, 4708 (2015)
  41. Ansari SA, Khan MM, Ansari MO, Cho MH, Sol. Energy Mater. Sol. Cells, 141, 162 (2015)
  42. Ansari SA, Khan MM, Ansari MO, Cho MH, Ceram. Int., 41, 9131 (2015)
  43. Janus M, Szymanski K, Mozia S, Catalysts, 11, 144 (2021)
  44. Mittal A, Mari B, Sharma S, Kumari V, Maken S, Kumari K, Kumar N, J. Mater. Sci. Mater. Electron., 30, 3186 (2019)
  45. Dunnill CW, Parkin IP, Dalton Trans., 40, 1635 (2011)
  46. Zhang W, Zou L, Lewis R, Dionysio D, J. Mater. Sci. Chem. Eng., 2, 28 (2014)
  47. Mohamed EF, Do TO, J. Taiwan Inst. Chem. Eng., 111, 181 (2020)
  48. Mohamed EF, Awad G, Environ. Sci. Pollut. Res., 1 (2020).
  49. Gao JJ, Jia CM, Zhang LP, Wang HM, Yang YH, Hung SF, Hsu YY, Liu B, J. Catal., 341, 82 (2016)
  50. Wu M, Hou P, Dong L, Cai L, Chen Z, Zhao M, Li J, Int. J. Nanomed., 14, 4781 (2019)
  51. Zhao JH, Nan J, Zhao ZW, Li N, Liu J, Cui FY, Appl. Catal. B: Environ., 202, 509 (2017)
  52. Jiang C, Ge Y, Chen W, Hua L, Li H, Zhang Y, Cao S, Catalysts, 9, 1 (2019)
  53. Nevarez-Martinez MC, Kobylansk MP, Mazierski P, Wołkiewicz J, et al., Molecules, 22, 564 (2017)
  54. Tzeng JH, Weng CH, Lim YH, Huang SM, Yen LT, Anotai J, Lin YT, J. Ind. Eng. Chem., 80, 376 (2019)
  55. Vignesh S, Suganthi S, Sundar JK, Raj V, J. Ind. Eng. Chem., 76, 318 (2019)
  56. Cao Y, Feng W, Su W, Int. J. Electrochem. Sci., 13, 8022 (2018)
  57. He W, Wei CL, Zhang XD, Wang YY, Liu QZ, Shen JX, Wang LZ, Yue YZ, Electrochim. Acta, 219, 682 (2016)
  58. Xie Y, Fang L, Cheng H, Hu C, Zhao H, Xu J, Fang J, Luc X, Zhang J, J. Mater. Chem. A, 4, 15612 (2016)
  59. Du Y, Niu X, Li W, An J, Liu Y, Chen Y, Wang P, Yang X, Feng Q, Materials, 12, 1 (2019)
  60. Hashem AM, Abuzeid HM, Winter M, Li J, Julien CM, Materials, 13, 1 (2020)
  61. Sharotri N, Sharma D, Sud D, J. Mater. Res. Technol., 8, 3995 (2019)
  62. Xue D, Luo J, Li Z, Yin Y, Shen J, Coatings, 10, 1 (2020)
  63. Saravanakumar K, Muthuraj V, Vadivel S, RSC Adv., 6, 61357 (2016)
  64. Jiang C, Ge Y, Chen W, Hua L, Li H, Zhan Y, Cao S, Catalysts, 9390, 1 (2019)
  65. Ata R, Sacco O, Vaiano V, Rizzo L, Tore GY, Sannino D, J. Phys. Chem. A, 348, 255 (2017)
  66. Nguyen CC, Vu NN, Do TO, J. Mater. Chem. A, 4, 4413 (2016)
  67. Chan YL, Pung SY, Sreekantan S, Yeoh FY, J. Exp. Nanosci., 11, 603 (2016)
  68. Gagrani A, Zhou J, Tsuzuki T, Ceram. Int., 44, 4694 (2018)
  69. Chen J, Huang Z, Meng H, Zhang L, Ji D, Liu J, Yu F, Qu L, Li Z, Sens. Actuators B-Chem., 260, 770 (2018)
  70. Lai X, Cheng Y, Han C, Luo G, Mater. Res. Innov., 23, 1 (2018)
  71. Lekshmi KV, Yesodharan S, Yesodharan E, Eur. Chem. Bull., 6, 177 (2017)
  72. Wang H, Gao Q, Li H, Gao M, Han B, Xia K, Zhou C, ACS Appl. Nano Mater., 1, 2727 (2018)
  73. Shayegan Z, Lee CS, Haghighat F, Chem. Eng. J., 334, 2408 (2018)
  74. Yahya N, Aziz F, Jamaludin N, Mutalib M, Ismail A, Salleh W, Jaafar J, Yusof N, Ludin N, J. Environ. Chem. Eng., 6, 7411 (2018)
  75. Ansari SA, Khan MM, Ansari MO, Cho MH, New J. Chem., 40, 3000 (2016)
  76. Rizzo L, Sannino D, Vaiano V, Sacco O, Scarpa A, Pietrogiacomi D, Appl. Catal. B: Environ., 144, 369 (2014)
  77. Perez E, Torres MF, Morales G, Murgia V, Sham E, Procedia Mater. Sci., 8, 649 (2015)
  78. Li Z, Zhu Y, Pang F, Liu H, Gao X, Ou W, Liu J, Wang X, Cheng X, Zhang Y, Ceram. Int., 41, 10063 (2015)
  79. Irie H, Watanabe Y, Hashimoto K, J. Phys. Chem. B, 107(23), 5483 (2003)
  80. Delegan N, Daghrir R, Drogui P, El Khakani MA, J. Appl. Phys., 116, 1 (2014)
  81. Cheng HE, Chen YR, Wu WT, Hsu CM, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 176, 596 (2011)
  82. Lee HU, Lee SC, Choi S, Son B, Lee SM, Kim HJ, Lee J, Chem. Eng. J., 228, 756 (2013)
  83. Zhu L, Xie J, Cui X, Shen J, Yang X, Zhang Z, Vaccum, 84, 797 (2010)
  84. Selvaraj A, Sivakumar S, Ramasamy AK, Balasubramanian V, Res. Chem. Intermed., 39, 2287 (2013)
  85. Hadi HM, Wahab HS, J. Al-Nahrain Univ., 18, 1 (2015)