Journal of Industrial and Engineering Chemistry, Vol.98, 389-396, June, 2021
Effect of the mixing ratio of methylcyclohexane and n-dodecane on the product composition and coke formation in the catalytic decomposition reaction of blended fuels
E-mail:, ,
Analyzing the products obtained from the catalytic reaction of jet fuels is challenging because the fuels consist of several components. It is crucial to select suitable model compounds as representatives of the fuel to study its catalytic reaction, and methylcyclohexane (MCH) and n-dodecane were selected consequently. Further, the change in the products obtained from the reaction (catalyzed by commercial HZSM-5 in a flow reactor under a supercritical condition (550 °C and 5 MPa)) was investigated by varying the ratios of MCH and n-dodecane in the blended fuels. Although the fuel conversion and gas yield were proportional to the n-dodecane fraction in the fuel, the yield of aromatic compounds at each time, which was relative to the yield at the initial time, did not indicate any relation with it. The relative yields of the aromatic hydrocarbons obtained from the blended fuel reduced much slower than those obtained from the pure fuels. Particularly, the fuel containing an n-dodecane mass fraction of 0.2 exhibited the lowest reduction rate regarding the relative yields of aromatic hydrocarbons. The change in the relative yields of the products regarding the fuels was not crucial to coke formation.
- Gasner JA, Foster RC, Fujimura C, 28th Joint Propulsion Conference and Exhibit, (1992).
- Gascoin N, Gillard P, Dufour E, Toure Y, J. Thermophys. Heat Transfer, 21, 86 (2007)
- Shafer L, Striebich R, Gomach J, Edwards T, 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, (2006).
- Edwards T, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibition, (2002).
- Edwards T et al., 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, (2006).
- Prak DJL, Mungan AL, Cowart JS, Trulove PC, J. Chem. Eng. Data, 63(5), 1642 (2018)
- Kim J, Park SH, Chun BH, Jeong BH, Han JS, Kim SH, Catal. Today, 185(1), 47 (2012)
- Granata S, Faravelli T, Ranzi E, Combust. Flame, 132(3), 533 (2003)
- Gerasimov GY, Losev SA, J. Eng. Phys. Thermophys., 78, 1059 (2005)
- Kim J, Park SH, Lee CH, Chun BH, Han JS, Jeong BH, Kim SH, Energy Fuels, 26(8), 5121 (2012)
- Bounaceur R, Burkle-Vitzthum V, Marquaire PM, Fusetti L, J. Anal. Appl. Pyrolysis, 103, 240 (2013)
- Edwards T, Maurice LQ, J. Propuls. Power, 17, 461 (2001)
- Daniau E, et al., 12th AIAA International Space Planes and Hypersonic Systemes and Technologies, (2003).
- Dooley S, Won SH, Heyne J, Farouk TI, Ju YG, Dryer FL, Kumar K, Hui X, Sung CJ, Wang HW, Oehlschlaeger MA, Iyer V, Iyer S, Litzinger TA, Santoro RJ, Malewicki T, Brezinsky K, Combust. Flame, 159(4), 1444 (2012)
- Humer S, Frassoldati A, Granata S, Faravelli T, Ranzi E, Seiser R, Seshadri K, Proc. Combust. Inst., 31, 393 (2007)
- Huang H, Spadaccini L, Sobel D, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibition, (2002).
- Liu GZ, Han YJ, Wang L, Zhang XW, Mi ZT, Energy Fuels, 23(1), 356 (2009)
- Herbinet O, Marquaire PM, Battin-Leclerc F, Fournet R, J. Anal. Appl. Pyrolysis, 78, 419 (2007)
- Zeppieri S, Brezinsky K, Glassman I, Combust. Flame, 108(3), 266 (1997)
- Lenhert DB, Ph.D. Thesis, Drexel University, 2004.
- Agosta A, Thesis MS, Drexel University, 2002.
- Kim J, Hyeon DH, Park SH, Chun BH, Jeong BH, Han JS, Kim SH, Catal. Today, 232, 63 (2014)
- Edwards T, Zabarnick S, Ind. Eng. Chem. Res., 32, 3117 (1993)
- Jung JS, Kim TJ, Seo G, J. Chem. Eng., 21, 777 (2004)
- Miskolczi N, Bartha L, Deak G, Polym. Degrad. Stab., 91, 517 (2006)
- Liu BS, Jiang L, Sun H, Au CT, Appl. Surf. Sci., 253(11), 5092 (2007)
- Zhao L, Yang T, Kaiser RI, Troy TP, Ahmed M, Ribeiro JM, Belisario-Lara D, Mebel AM, J. Phys. Chem. A, 121(6), 1281 (2017)
- Song Y, Lin W, Guo X, Dong L, Mu X, Tian H, Wang L, Green Energy Environ., 4, 75 (2019)
- Zhang HB, Ma YC, Song KS, Zhang YH, Tang Y, J. Catal., 302, 115 (2013)
- Socci J, Osatiashtiani A, Kyriakou G, Bridgwater T, Appl. Catal. A: Gen., 570, 218 (2019)
- Corma A, Miguel PJ, Orchilles AV, Appl. Catal. A: Gen., 138(1), 57 (1996)
- van Bokhoven JA, Williams BA, Ji W, Koningsberger DC, Kung HH, Miller JT, J. Catal., 224(1), 50 (2004)
- Altwasser S, Welker C, Traa Y, Weitkamp J, Microporous Mesoporous Mater., 83, 345 (2005)
- Krannila H, Haag WO, Gates BC, J. Catal., 135, 115 (1992)
- Narbeshuber TF, Vinek H, Lercher JA, J. Catal., 157(2), 388 (1995)
- Babitz SM, Williams BA, Miller JT, Snurr RQ, Haag WO, Kung HH, Appl. Catal. A: Gen., 179(1-2), 71 (1999)
- Wielers AFH, Vaarkamp M, Post MFM, J. Catal., 127, 51 (1991)
- Corma A, Planelles J, Sanchez-Marin J, Tomas F, J. Catal., 93, 30 (1985)
- Kitagawa H, Sendoda Y, Ono Y, J. Catal., 101, 12 (1986)
- Fan Y, Cai Y, Li X, Yin H, Xia J, J. Ind. Eng. Chem., 46, 139 (2017)
- Lander H, Nixon AC, J. Aircraft, 8, 200 (1971)
- Yeh YH, Tsai CE, Wang C, Gorte RJ, Ind. Eng. Chem. Res., 56(21), 6198 (2017)
- Yeh YH, Yu JY, Luo J, Gorte RJ, Ind. Eng. Chem. Res., 54(43), 10675 (2015)
- Bibby DM, Howe RF, McLellan GD, Appl. Catal. A: Gen., 93, 1 (1992)
- Sang Y, Xing A, Wang C, Han Z, Wu Y, Catalysts, 7, 171 (2017)
- Zhang H, Wang Y, Shao S, Xiao R, Sci. Rep., 6, 37513 (2016)
- Du SC, Gamliel DP, Giotto MV, Valla JA, Bollas GM, Appl. Catal. A: Gen., 513, 67 (2016)