화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.99, 326-333, July, 2021
Effects of methanesulfonic acid on electrolyte for vanadium redox flow batteries
E-mail:, ,
Methanesulfonic acid (MSA) is investigated as an additive for improving the thermal stability and electrochemical property of the vanadium redox flow battery (VRFB) electrolyte. The effect of MSA on the thermal stability of the electrolyte is estimated by a storage test, inductively coupled plasma mass spectrometry, and ultraviolet-visible spectrometry. Thermal stability tests show that MSA delays the formation of precipitates. The precipitates formed from the electrolyte are analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The precipitates gained from the V(II) electrolyte at -5 °C and the V(V) electrolyte at 40 °C have different physicochemical properties. The influence of MSA on the electrochemical property is examined by cyclic voltammetry, linear polarization, and electrochemical impedance spectroscopy. According to the electrochemical analysis, MSA enhances the diffusion of the V(III) and V(IV) ions and the redox reaction rate of the V ions. Additionally, nuclear magnetic resonance analysis is performed to understand the positive effect of MSA on the electrolyte. A VRFB full cell employing the electrolyte with MSA shows enhanced energy efficiency as well as high energy density by improving electrolyte utilization.
  1. Skyllas-Kazacos M, Kasherman D, Hong DR, Kazacos M, J. Power Sources, 35, 399 (1991)
  2. Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M, Electrochim. Acta, 101, 27 (2013)
  3. Wang W, Luo QT, Li B, Wei XL, Li LY, Yang ZG, Adv. Funct. Mater., 23(8), 970 (2013)
  4. Minke C, Turek T, J. Power Sources, 376, 66 (2018)
  5. Shi Y, Eze C, Xiong BY, He WD, Zhang H, Lim TM, Ukil A, Zhao JY, Appl. Energy, 238, 202 (2019)
  6. Rahman F, Skyllas-Kazacos M, J. Power Sources, 72(2), 105 (1998)
  7. Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B, Zhang J, Xia G, Hu J, Graff G, Liu J, Yang Z, Adv. Eng. Mater., 1, 394 (2011)
  8. Roe S, Menictas C, Skyllas-Kazacos M, J. Electrochem. Soc., 163(1), A5023 (2016)
  9. Rahman F, Skyllas-Kazacos M, J. Power Sources, 189(2), 1212 (2009)
  10. Cao L, Skyllas-Kazacos M, Menicta C, Noack J, J. Energy Chem., 27, 1269 (2018)
  11. Li S, Huang KL, Liu SQ, Fang D, Wu XW, Lu D, Wu T, Electrochim. Acta, 56(16), 5483 (2011)
  12. Ding C, Ni X, Li XF, Xi XL, Han XW, Bao XH, Zhang HM, Electrochim. Acta, 164, 307 (2015)
  13. Gernon MD, Wu M, Buszta T, Janney P, Green Chem., 1, 127 (1999)
  14. Tang C, Zhou DB, Electrochim. Acta, 65, 179 (2012)
  15. Na ZL, Xu SN, Yin DM, Wang LM, J. Power Sources, 295, 28 (2015)
  16. He ZX, Liu JL, Han HG, Chen Y, Zhou Z, Zheng SJ, Lu W, Liu SQ, He Z, Electrochim. Acta, 106, 556 (2013)
  17. Peng S, Wang NF, Wu XJ, Liu SQ, Fang D, Liu YN, Huang KL, Int. J. Electrochem. Sci., 7, 643 (2012)
  18. Zhang JL, Li LY, Nie ZM, Chen BW, Vijayakumar M, Kim S, Wang W, Schwenzer B, Liu J, Yang ZG, J. Appl. Electrochem., 41(10), 1215 (2011)
  19. Chu Y, Liu C, Ren H, Zhang Y, Ma C, Int. J. Electrochem. Sci., 11, 1987 (2016)
  20. Choi C, Kim S, Kim R, Choi Y, Kim S, Jung H, Yang JH, Kim HT, Renew. Sust. Energ. Rev., 69, 263 (2017)
  21. Watt-Smith MJ, Ridley P, Wills RGA, Shah AA, Walsh FC, J. Chem. Technol. Biotechnol., 88(1), 126 (2013)