화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.100, 112-118, August, 2021
Low-cost and highly safe solid-phase sodium ion battery with a Sn-C nanocomposite anode
E-mail:
With the use of a conducting ceramic-based solid-phase hybrid electrolyte, the batteries can maintain safe and stable operation during the reversible insertion/extraction of sodium ions by the suppression of sodium dendrites. Here, Sn-C nanocomposites are prepared by a simple one-pot synthesis process, and they have a unique structure in which nanosized Sn particles are embedded in an amorphous carbon host derived from sucrose. The Sn-C nanocomposite is used to fabricate a solid-phase sodium-ion battery with a Na3Zr2Si2PO12 ceramic-based hybrid solid electrolyte. The Sn-C-based solid-phase sodium battery shows high electrochemical performance with a high discharge capacity of 669.9 mA h g-1 at 0.2 C with a Coulombic efficiency close to 100%. The electrochemical alloy mechanism of the Sn-C nanocomposite is investigated by X-ray photoelectron spectroscopy. The good electrochemical performance demonstrates the advantages of using the Na3Zr2Si2PO12 ceramic-based hybrid solid electrolyte and Sn-C nanocomposite in solid-phase sodium ion batteries.
  1. Choi YS, Byeon YW, Ahn JP, Lee JC, Nano Lett., 17, 679 (2017)
  2. Liu Y, Merinov BV, WAG, PNAS 113, 3735 (2016).
  3. Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L, J. Am. Chem. Soc., 134(51), 20805 (2012)
  4. Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Ma X, Ceder G, Energy Environ. Sci., 4, 3680 (2011)
  5. Liu M, Huang J, Li J, Cao L, Zhao Y, Ma M, Koji K, J. Alloy. Compd., 384, 155177 (2020)
  6. Zhang BA, Rousse G, Foix D, Dugas R, Corte DAD, Tarascon JM, Adv. Mater., 28(44), 9824 (2016)
  7. Narayanan S, Reid S, Butler S, Thangadurai V, Solid State Ion., 331, 22 (2019)
  8. Chen D, Luo F, Zhou W, Zhu D, Mater. Lett., 221, 172 (2018)
  9. Lv F, Wang Z, Shi L, Zhu J, Edstrom K, Mindemark J, Yuan S, J. Power Sources, 441, 227175 (2019)
  10. Jung JI, Kim D, Kim H, Jo YN, Park JS, Kim Y, ACS Appl. Mater. Interfaces, 9, 304 (2017)
  11. Traversa E, Montanaro L, Aono H, Sadaoka Y, J. Electroceram., 5, 261 (2000)
  12. Kim Y, Kim H, Park S, Seo I, Kim Y, Electrochim. Acta, 191, 1 (2016)
  13. Shao Y, Zhong G, Lu Y, Liu L, Zhao C, Zhang Q, Hu YS, Yang Y, Chen L, Energy Storage Mater., 23, 514 (2009)
  14. Bresser D, Mueller F, Buchholz D, Paillard E, Passerini S, Electrochim. Acta, 128, 163 (2014)
  15. Kim C, Kim I, Kim H, Sadan MK, Yeo H, Cho G, Ahn J, Ahn J, Ahn H, J. Mater. Chem. A, 6, 22809 (2018)
  16. Liu H, Hu R, Zeng M, Liu J, Zhu M, J. Mater. Chem., 22, 8022 (2012)
  17. Nita C, Fullenwarth J, Monconduit L, Le Meins JM, Parmentier J, Sougrati MT, Ghimbeu CM, ChemElectroChem, 5, 3249 (2018)
  18. Kim Y, Kim Y, Choi A, Woo S, Mok D, Choi NS, Jung YS, Ryu JH, Oh SM, Lee KT, Adv. Mater., 26(24), 4139 (2014)
  19. Ying H, Han WQ, Adv. Sci., 4, 170029 (2017)
  20. Cheng YY, Huang JF, Li RZ, Xu ZW, Cao LY, Ouyang HB, Li JY, Qi H, Wang CW, Electrochim. Acta, 180, 227 (2015)
  21. Liu YC, Zhang N, Jiao LF, Tao ZL, Chen J, Adv. Funct. Mater., 25(2), 214 (2015)
  22. Van der Marel C, Van Oosten A, Gertsma W, Van der Lugt W, J. Phys. F Metal Phys., 12, 2349 (1982).
  23. Kim C, Lee KY, Kim I, Park J, Cho G, Kim KW, Ahn JH, Ahn HJ, J. Power Sources, 317, 153 (2016)
  24. Liang JL, Gan YH, Li Y, Energy Conv. Manag., 155, 1 (2018)
  25. Wang D, Li X, Yang J, Wang J, Geng D, Li R, Cai M, Sham TK, Sun X, Phys. Chem. Chem. Phys., 15, 3535 (2013)
  26. Lee JH, Oh SH, Jeong SY, Kang YC, Cho JS, Nanoscale, 10, 21483 (2018)
  27. Kim JK, Lim YJ, Kim H, Cho GB, Kim Y, Energy Environ. Sci., 8, 3589 (2015)
  28. Mohanta J, Kim HJ, Jeong SM, Cho JS, Ahn HJ, Ahn JH, Kim JK, Chem. Eng. J., 391, 123510 (2020)
  29. Derrien G, Hassoun J, Panero S, Scrosati B, Adv. Mater., 19(17), 2336 (2007)
  30. Zhang H, Huang X, Noonan O, Zhou L, Yu C, Adv. Funct. Mater., 27, 160602 (2017)
  31. Ghosh S, Jeong SM, Polaki SR, Korean J. Chem. Eng., 5, 1389 (2018)
  32. Hassoun J, Derrien G, Panero S, Scrosati B, Adv. Mater., 20(16), 3169 (2008)
  33. Oh SH, Jo MS, Jeong SM, Kang YC, Cho JS, Chem. Eng. J., 368, 438 (2019)
  34. Kim HJ, Bae GH, Lee SM, Ahn JH, Kim JK, Electrochim. Acta, 300, 18 (2019)
  35. Park H, Jung K, Nezafati M, Kim CS, Kang B, ACS Appl. Mater. Interfaces, 8, 27814 (2016)
  36. Kim Y, Kim JK, Vaalma C, Bae GH, Kim GT, Passerini S, Kim Y, Carbon, 129, 564 (2018)
  37. Zhang Z, Zhang Q, Ren C, Luo F, Ma Q, Hu YS, Zhou Z, Li H, Huang X, Chen L, J. Mater. Chem. A, 4, 15823 (2016)
  38. Matios E, Wang H, Wang CL, Li WY, Ind. Eng. Chem. Res., 58(23), 9758 (2019)
  39. Ponrouch A, Marchante E, Courty M, Tarascon JM, Palacin MR, Energy Environ. Sci., 5, 8572 (2012)
  40. Wang H, Wang C, Matios E, Li W, Nano Lett., 17, 6808 (2017)
  41. Eshetu GG, Elia GA, Armand M, Forsyth M, Komaba S, Rojo T, Passerini S, Adv. Eng. Mater., 10, 200009 (2020)
  42. Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y, J. Mater. Chem. A, 1, 7181 (2013)