Journal of Industrial and Engineering Chemistry, Vol.100, 112-118, August, 2021
Low-cost and highly safe solid-phase sodium ion battery with a Sn-C nanocomposite anode
E-mail:
With the use of a conducting ceramic-based solid-phase hybrid electrolyte, the batteries can maintain safe and stable operation during the reversible insertion/extraction of sodium ions by the suppression of sodium dendrites. Here, Sn-C nanocomposites are prepared by a simple one-pot synthesis process, and they have a unique structure in which nanosized Sn particles are embedded in an amorphous carbon host derived from sucrose. The Sn-C nanocomposite is used to fabricate a solid-phase sodium-ion battery with a Na3Zr2Si2PO12 ceramic-based hybrid solid electrolyte. The Sn-C-based solid-phase sodium battery shows high electrochemical performance with a high discharge capacity of 669.9 mA h g-1 at 0.2 C with a Coulombic efficiency close to 100%. The electrochemical alloy mechanism of the Sn-C nanocomposite is investigated by X-ray photoelectron spectroscopy. The good electrochemical performance demonstrates the advantages of using the Na3Zr2Si2PO12 ceramic-based hybrid solid electrolyte and Sn-C nanocomposite in solid-phase sodium ion batteries.
Keywords:Sn-C nanocomposite;Conducting ceramic;Hybrid solid-phase electrolyte;Sodium ion battery;Electrochemical performance
- Choi YS, Byeon YW, Ahn JP, Lee JC, Nano Lett., 17, 679 (2017)
- Liu Y, Merinov BV, WAG, PNAS 113, 3735 (2016).
- Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L, J. Am. Chem. Soc., 134(51), 20805 (2012)
- Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Ma X, Ceder G, Energy Environ. Sci., 4, 3680 (2011)
- Liu M, Huang J, Li J, Cao L, Zhao Y, Ma M, Koji K, J. Alloy. Compd., 384, 155177 (2020)
- Zhang BA, Rousse G, Foix D, Dugas R, Corte DAD, Tarascon JM, Adv. Mater., 28(44), 9824 (2016)
- Narayanan S, Reid S, Butler S, Thangadurai V, Solid State Ion., 331, 22 (2019)
- Chen D, Luo F, Zhou W, Zhu D, Mater. Lett., 221, 172 (2018)
- Lv F, Wang Z, Shi L, Zhu J, Edstrom K, Mindemark J, Yuan S, J. Power Sources, 441, 227175 (2019)
- Jung JI, Kim D, Kim H, Jo YN, Park JS, Kim Y, ACS Appl. Mater. Interfaces, 9, 304 (2017)
- Traversa E, Montanaro L, Aono H, Sadaoka Y, J. Electroceram., 5, 261 (2000)
- Kim Y, Kim H, Park S, Seo I, Kim Y, Electrochim. Acta, 191, 1 (2016)
- Shao Y, Zhong G, Lu Y, Liu L, Zhao C, Zhang Q, Hu YS, Yang Y, Chen L, Energy Storage Mater., 23, 514 (2009)
- Bresser D, Mueller F, Buchholz D, Paillard E, Passerini S, Electrochim. Acta, 128, 163 (2014)
- Kim C, Kim I, Kim H, Sadan MK, Yeo H, Cho G, Ahn J, Ahn J, Ahn H, J. Mater. Chem. A, 6, 22809 (2018)
- Liu H, Hu R, Zeng M, Liu J, Zhu M, J. Mater. Chem., 22, 8022 (2012)
- Nita C, Fullenwarth J, Monconduit L, Le Meins JM, Parmentier J, Sougrati MT, Ghimbeu CM, ChemElectroChem, 5, 3249 (2018)
- Kim Y, Kim Y, Choi A, Woo S, Mok D, Choi NS, Jung YS, Ryu JH, Oh SM, Lee KT, Adv. Mater., 26(24), 4139 (2014)
- Ying H, Han WQ, Adv. Sci., 4, 170029 (2017)
- Cheng YY, Huang JF, Li RZ, Xu ZW, Cao LY, Ouyang HB, Li JY, Qi H, Wang CW, Electrochim. Acta, 180, 227 (2015)
- Liu YC, Zhang N, Jiao LF, Tao ZL, Chen J, Adv. Funct. Mater., 25(2), 214 (2015)
- Van der Marel C, Van Oosten A, Gertsma W, Van der Lugt W, J. Phys. F Metal Phys., 12, 2349 (1982).
- Kim C, Lee KY, Kim I, Park J, Cho G, Kim KW, Ahn JH, Ahn HJ, J. Power Sources, 317, 153 (2016)
- Liang JL, Gan YH, Li Y, Energy Conv. Manag., 155, 1 (2018)
- Wang D, Li X, Yang J, Wang J, Geng D, Li R, Cai M, Sham TK, Sun X, Phys. Chem. Chem. Phys., 15, 3535 (2013)
- Lee JH, Oh SH, Jeong SY, Kang YC, Cho JS, Nanoscale, 10, 21483 (2018)
- Kim JK, Lim YJ, Kim H, Cho GB, Kim Y, Energy Environ. Sci., 8, 3589 (2015)
- Mohanta J, Kim HJ, Jeong SM, Cho JS, Ahn HJ, Ahn JH, Kim JK, Chem. Eng. J., 391, 123510 (2020)
- Derrien G, Hassoun J, Panero S, Scrosati B, Adv. Mater., 19(17), 2336 (2007)
- Zhang H, Huang X, Noonan O, Zhou L, Yu C, Adv. Funct. Mater., 27, 160602 (2017)
- Ghosh S, Jeong SM, Polaki SR, Korean J. Chem. Eng., 5, 1389 (2018)
- Hassoun J, Derrien G, Panero S, Scrosati B, Adv. Mater., 20(16), 3169 (2008)
- Oh SH, Jo MS, Jeong SM, Kang YC, Cho JS, Chem. Eng. J., 368, 438 (2019)
- Kim HJ, Bae GH, Lee SM, Ahn JH, Kim JK, Electrochim. Acta, 300, 18 (2019)
- Park H, Jung K, Nezafati M, Kim CS, Kang B, ACS Appl. Mater. Interfaces, 8, 27814 (2016)
- Kim Y, Kim JK, Vaalma C, Bae GH, Kim GT, Passerini S, Kim Y, Carbon, 129, 564 (2018)
- Zhang Z, Zhang Q, Ren C, Luo F, Ma Q, Hu YS, Zhou Z, Li H, Huang X, Chen L, J. Mater. Chem. A, 4, 15823 (2016)
- Matios E, Wang H, Wang CL, Li WY, Ind. Eng. Chem. Res., 58(23), 9758 (2019)
- Ponrouch A, Marchante E, Courty M, Tarascon JM, Palacin MR, Energy Environ. Sci., 5, 8572 (2012)
- Wang H, Wang C, Matios E, Li W, Nano Lett., 17, 6808 (2017)
- Eshetu GG, Elia GA, Armand M, Forsyth M, Komaba S, Rojo T, Passerini S, Adv. Eng. Mater., 10, 200009 (2020)
- Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y, J. Mater. Chem. A, 1, 7181 (2013)