화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.100, 270-279, August, 2021
Life-cycle assessment of SO2 removal from flue gas using carbonate melt
E-mail:
To determine the environmentally-benign process between the carbonate melt flue gas desulfurization (CMFGD) and the conventional process as the process of removing SO2 from the flue gas, in this paper, a life cycle assessment is applied using the data derived from the process simulation, including the heat integration methodology. The CMFGD process has a 14.4%-26.8% lower environmental impact than the conventional process on all indicators. To achieve the economic and environmental benefits of the CMFGD process, a heat exchanger network (HEN) is introduced using HI to use the heat wasted in the CMFGD process. The HEN reduces environmental impacts (i.e., reduced CC by 24.46%, and PM by 49.96%), and economics (reduced total levelized cost by 0.8%) compared to the CMFGD process before HI. These results suggest that the CMFGD process can replace the conventional methods to remove SO2 from the flue gas and can have environmental benefits by reducing CC and PM, significantly influencing the atmosphere.
  1. Xu X, Song C, Wincek R, Andresen JM, Miller BG, Scaroni AW, Fuel Chem. Div. Prepr., 48, 162 (2003)
  2. Jiang K, Yu H, Chen L, Fang M, Azzi M, Cottrell A, Li K, Appl. Energy, 260, 114316 (2020)
  3. Wang Y, Zhao L, Otto A, Robinius M, Stolten D, Energy Procedia, 114, 650 (2017)
  4. Pan SY, Du MA, Huang IT, Liu IH, Chang E, Chiang PC, J. Clean Prod., 108, 409 (2015)
  5. Ram M, Child M, Aghahosseini A, Bogdanov D, Lohrmann A, Breyer C, J. Clean Prod., 199, 687 (2018)
  6. Von Blottnitz H, Curran MA, J. Clean Prod., 15, 607 (2007)
  7. Si T, Wang CB, Yan XN, Zhang Y, Ren YJ, Hu J, Anthony EJ, Appl. Energy, 242, 1528 (2019)
  8. Zhao HT, Mu XL, Yang G, George M, Cao P, Fanady B, Rong SY, Gao X, Wu T, Appl. Energy, 207, 254 (2017)
  9. Bhanarkar AD, Gavane AG, Tajne DS, Tamhane SM, Nema P, Fuel, 87(10-11), 2095 (2008)
  10. Kang YS, Kim SS, Lee HD, Kim JK, Hong SC, Appl. Chem. Eng., 22(2), 219 (2011)
  11. Zhu L, Gan Q, Liu Y, Yan Z, J. Clean Prod., 166, 189 (2017)
  12. Xie J, Xin L, Hu X, Cheng W, Liu W, Wang Z, J. Clean Prod., 250, 119487 (2020)
  13. Ellison W, Radiat. Phys. Chem., 45, 1003 (1995)
  14. Srivastava RK, Jozewicz W, Singer C, Environ. Progress, 20, 219 (2001)
  15. Karousos DS, Labropoulos AI, Sapalidis A, Kanellopoulos NK, Iliev B, Schubert TJS, Romanos GE, Chem. Eng. J., 313, 777 (2017)
  16. Yao L, Yang L, Jiang WJ, Jiang X, Ind. Eng. Chem. Res., 58(34), 15693 (2019)
  17. Zhang J, Zhang YX, Yang H, Zheng CH, Jin K, Wu XC, Gao X, Cen KF, J. Clean Prod., 165, 1005 (2017)
  18. Koralegedara NH, Pinto PX, Dionysiou DD, Al-Abed SR, J. Environ. Manage., 251, 109572 (2019)
  19. Benko T, Mizsey P, Periodica Polytechnica Chem. Eng., 51, 19 (2007)
  20. Poullikkas A, Energy Technol. Policy, 2, 92 (2015)
  21. Kim H, Korea. Patent, 2012 (2012).
  22. Ahn J, Korea. Patent, 2015 (2015).
  23. Lim JH, Choi YR, Kim GY, Song HJ, Kim JH, Korean Chem. Eng. Res., 57(5), 743 (2019)
  24. Kaplan V, Wachtel E, Dosmukhamedov N, Lubomirsky I, Int. J. Oil Gas Coal Technol., 18, 25 (2018)
  25. Kaplan V, Wachtel E, Lubomirsky I, RSC Adv., 3, 15842 (2013)
  26. Dosmukhamedov N, Kaplan V, Zholdasbay Y, Wachtel E, Lubomirsky I, RSC Adv., 7, 21406 (2017)
  27. Cousins A, Pearson P, Puxty G, Jiang K, Garg B, Zhai R, Ott P, Verheyen V, Feron PH, Greenh. Gases: Sci. Technol., 9, 1087 (2019)
  28. Obradovic BM, Sretenovic GB, Kuraica MM, J. Hazard. Mater., 185(2-3), 1280 (2011)
  29. Marten JC, A history of flue gas desulfurization systems since 1850, Res. Dev. Demonstr. (1977).
  30. M.A. Hanif, N. Ibrahim, A. Abdul Jalil, Environ. Sci. Pollut. Res., 1 (2020).
  31. Abboud NE, Chaaban FB, Tabanji WE, Int. J. Environ. Stud., 57, 225 (2000)
  32. Zou C, Huang Z, Xiong J, Guo P, Zheng C, Sci. China Series E: Technol. Sci., 53, 155 (2010)
  33. Dal Pozzo A, Lazazzara L, Antonioni G, Cozzani V, J. Hazard. Mater., 394, 122518 (2020)
  34. Garg B, Haque N, Cousins A, Pearson P, Verheyen TV, Feron PH, Int. J. Greenh. Gas Control, 98, 103065 (2020)
  35. Lee J, Cho H, Moon I, Lubomirsky I, Kaplan V, Kim J, Ahn Y, Comput. Chem. Eng., 146, 107227 (2021)
  36. Ahn Y, Byun J, Kim D, Kim BS, Lee CS, Han J, Green Chem., 21, 3442 (2019)
  37. Kim H, Lee S, Ahn Y, Lee J, Won W, ACS Sustain. Chem. Eng., 8, 12419 (2020)
  38. Chevalier J, Rousseaux P, Benoit V, Benadda B, Chem. Eng. Sci., 58(10), 2053 (2003)
  39. Benetto E, Rousseaux P, Blondin J, Fuel, 83(7-8), 957 (2004)
  40. Cui L, Li Y, Tang Y, Shi Y, Wang Q, Yuan X, Kellett J, J. Clean Prod., 199, 359 (2018)
  41. Russo V, Salmi T, Carletti C, Murzin C, Westerlund T, Tesser R, Gre’nman H, Ind. Eng. Chem. Res., 56, 13254 (2017)
  42. Yin Y, Carslaw K, Feingold G, Meteorol. Soc., 131, 221 (2005).
  43. Kallinikos L, Farsari E, Spartinos D, Papayannakos N, Fuel Process. Technol., 91, 1794 (2010)
  44. Guinee JB, Lindeijer E, Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards, Springer Science & Business Media, 2002.
  45. Horne R, Grant T, Verghese K, Life Cycle Assessment: Principles, Practice, and Prospects, CSIRO Publishing, 2009.
  46. von der Assen N, Voll P, Peters M, Bardow A, Chem. Soc. Rev., 43, 7982 (2014)
  47. Rebitzer G, Ekvall T, Frischknecht R, Hunkeler D, Norris G, Rydberg T, Schmidt WP, Suh S, Weidema SP, Pennington DW, Environ. Int., 30, 701 (2004)
  48. Suh S, Huppes G, J. Clean Prod., 13, 687 (2005)
  49. Hauschild MZ, Huijbregts MA, Introducing Life Cycle Impact Assessment, Springer, pp.1 2015.
  50. Hertwich EG, Mateles SF, Pease WS, McKone TE, Environ. Toxicol. Chem., 20, 928 (2001)
  51. Bauer C, Hofer J, Althaus HJ, Del Duce A, Simons A, Appl. Energy, 157, 871 (2015)
  52. Borrion AL, McManus MC, Hammond GP, Biomass Bioenergy, 47, 9 (2012)