화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.4, 560-567, July, 2021
Copper-Exfoliated Graphite Nanoplatelet 하이브리드 입자를 이용한 PC 복합체의 기계적 성질과 열전도도
Mechanical Properties and Thermal Conductivity of PC Composite Containing Copper-Exfoliated Graphite Nanoplatelet Hybrid Powder
E-mail:
초록
본 연구에서는 폴리카보네이트/구리-팽창흑연 나노판(PC/Cu-xGnP) 복합체가 제조되었다. PC 복합체 제조에 앞서 두 종류의 Cu-xGnP 하이브리드 입자가 제조 되었는데 하나는 xGnP가 구리에 완전 삽입된 Cu-xGnP 입자이고 다른 하나는 부분 삽입된 Cu-xGnP 입자이다. 두 종류의 하이브리드 입자의 삽입 정도는 투과 전자 현미경으로 확인되었다. 구리와 xGnP를 이용하여 제조된 PC/Cu 및 PC/xGnP 복합체와 비교하여 Cu-xGnP로 제조된 PC/CuxGnP복합체의 기계적 성질과 열전도도가 더 우수하였다. 부분 삽입된 PC/Cu-xGnP 복합체의 열전도도는 완전 삽입된 PC/Cu-xGnP 복합체보다 모든 함량에서 높게 관찰되었다. 반면에 기계적인 성질에서는 완전 삽입된 PC/CuxGnP복합체가 부분 삽입된 PC/Cu-xGnP 복합체보다 우수하였다.
Polycarbonate/copper-exfoliated graphite nanoplatelets (PC/Cu-xGnP) composites were prepared. Prior to the preparation of the composite, two types of Cu-xGnP hybrid powder were prepared: one is fully inserted xGnP and the other is partially inserted xGnP in Cu-flakes. TEM images of hybrid powder showed the partially and fully inserted xGnP in Cu-flakes. On comparing with the mechanical properties and thermal conductivity, PC/Cu-xGnP composite was better than those of PC/Cu and PC/xGnP composites. The thermal conductivity of the partially inserted PC/Cu-xGnP composite was higher than that of the fully inserted PC/Cu-xGnP composite at the same filler concentration. On the other hand, the fully inserted PC/Cu-xGnP composite was superior to the partially inserted PC/Cu-xGnP composite in terms of mechanical properties.
  1. Chung DDL, J. Mater. Sci., 37(8), 1475 (2002)
  2. Kim H, Macosko CW, Polymer, 50(15), 3797 (2009)
  3. Yoonessi M, Gaier JR, ACS Nano, 4, 7211 (2010)
  4. Muller MT, Hilarius K, Liebscher M, lellinger D, Alig I, Potschke P, Materials, 10, 545 (2017)
  5. Oyarzabal A, Christiano-Tassi A, Laredo E, Newman D, et al., J. Appl. Polym. Sci., 134, 44654 (2017)
  6. King JA, Via MD, Morrison FA, Wiese KR, Beach EA, Cieslinski MJ, Bogucki GR, J. Compos. Mater., 46, 1029 (2011)
  7. Zakaulla M, Parveen F, Harish A, Ahmad N, Mater. Today, 26, 296 (2020)
  8. Steurer P, Wissert R, Thomann R, Mulhaupt R, Macromol. Rapid Commun., 30, 316 (2009)
  9. Potts JR, Murali S, Zhu YW, Zhao X, Ruoff RS, Macromolecules, 44(16), 6488 (2011)
  10. Gedler G, Antunes M, Realinho V, Velasco JI, Polym. Degrad. Stabil., 97, 1297 (2012)
  11. Via MD, King JA, Keith JM, Bogucki GR, J. Appl. Polym. Sci., 124(1), 182 (2012)
  12. Yoon SH, Jun HT, RSC Adv., 7, 45902 (2017)
  13. Kim SY, Ye JN, Yu J, Compos. Pt. A-Appl. Sci. Manuf., 69, 219 (2015)
  14. Gu J, Xie C, Li H, Dang J, Geng W, Zhang Q, Polym. Compos., 35, 1087 (2014)
  15. Alam FE, Dai W, Yang M, Du S, Li X, Yu J, Jiang N, Lin CT, J. Mater. Chem. A, 48, 6164 (2017)
  16. Wu K, Lei C, Huang R, Yang W, Chai S, Geng C, Chen F, Fu Q, ACS Appl. Mater. Interfaces, 9, 7637 (2017)
  17. Chu K, Jia C, Phys. Status Solidi A-Appl. Res., 211, 184 (2014)
  18. Li MX, Che HW, Liu XY, Liang SX, Xie HL, J. Mater. Sci., 49(10), 3725 (2014)
  19. Tang Y, Yang X, Wang R, Li M, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 599, 247 (2014)
  20. Li W, Li D, Fu Q, Pan C, RSC Adv., 5, 80428 (2015)
  21. Gao X, Yue HY, Guo EJ, Zhang H, Lin XY, Yao LH, Wang B, Powder Technol., 301, 601 (2016)
  22. Saboori A, Pavese M, Badini C, Fino PA, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 49, 333 (2018)
  23. Lia W, Lia D, Fua Q, Pan C, RSC Adv., 5, 80428 (2015)
  24. Park HJ, Badakhsh A, Im IT, Kim MS, Park CW, Appl. Therm. Eng., 107, 907 (2016)
  25. Hwang SH, Bang DS, Yoon KH, Park YB, Lee DY, Jeong SS, J. Compos. Mater., 44, 2711 (2010)
  26. Kim JS, Lee YS, Yoon KH, Han JH, Polym. Korea, 45, 1 (2021)