Applied Chemistry for Engineering, Vol.32, No.4, 393-402, August, 2021
CO2/N2 분리를 위한 Pebax 혼합막에서 Zeolitic Imidazolate Framework-7의 영향
Effect of Zeolitic Imidazolate Framework-7 in Pebax Mixed Matrix Membrane for CO2/N2 Separation
E-mail:
초록
본 연구는 대표적 poly(ether-b-amide)인 Pebax-1657과 Pebax-2533에 합성된 zeolitic imidazolate framework-7 (ZIF-7)을 넣어 혼합막을 제조하고, 단일기체 N2, CO2에 대한 투과 성질을 조사하였다. 기체투과 결과에서, N2의 경우 Pebax-1657/ZIF-7 혼합막과 Pebax-2533/ZIF-7 혼합막 모두 ZIF-7 혼입에 따라 투과도가 감소하는 비슷한 현상을 보였지만, CO2 투과도의 경우는 고분자에 종류에 따라 조금 다른 경향을 보였다. Pebax-1657/ZIF-7 혼합막의 경우는 ZIF-7의 0~3 wt% 함량 범위에서 CO2 투과도가 감소하다가 그 이후 함량에서 투과도가 증가하였고, Pebax-2533/ZIF-7 혼합막의 경우는 ZIF-7의 0~5 wt% 함량 범위에서 CO2 투과도 증가 없이 감소하였다. CO2/N2 선택도의 경우 두 혼합막 모두 ZIF-7의 함량이 많아짐에 따라 증가하는 경향을 보였으며, 특히 Pebax-2533/ZIF-7 5 wt%은 다른 혼합막들에 비해 가장 좋은 투과 성능을 보였다. 이는 ZIF-7이 Pebax-1657보다 Pebax-2533에 더 좋은 호환성을 보이며 CO2에 대한 선택적인 특성이 잘 나타났기 때문으로 생각된다.
In this study, a mixed matrix membrane was prepared by putting the zeolitic imidazolate framework-7 (ZIF-7) synthesized in Pebax-1657 and Pebax-2533, which are representative poly(ether-b-amide), and the permeability properties of single gas such as N2 and CO2 were investigated. From the gas permeation results, in the case of N2, both the Pebax-1657/ZIF-7 and Pebax-2533/ZIF-7 mixed matrix membranes showed a similar phenomenon in which the permeability decreased with the incorporation of ZIF-7. For CO2 permeability, the tendency was slightly different depending on the type of polymer. In the Pebax-1657/ZIF-7 mixed membrane, the CO2 permeability decreased in the range of 0~3 wt% of ZIF-7, and increased at higher contents. The CO2 permeability of the Pebax-2533/ZIF-7 mixed matrix membrane gradually decreased without increasing the permeability in the range of 0~5 wt% of ZIF-7. Regarding CO2/N2 selectivity, both mixed films showed a tendency to increase with increasing the ZIF-7 content. In particular, Pebax-2533/ZIF-7 5 wt% showed the best gas permeation performance compared to other mixed matrix membrane. This is thought to be because ZIF-7 shows better compatibility with Pebax-2533 than that of Pebax-1657 and also better CO2 selective property.
- Nafisi V, Hagg MB, J. Membr. Sci., 459, 244 (2014)
- Murali RS, Ismail AF, Rahman MA, Sridhar S, Sep. Purif. Technol., 129, 1 (2014)
- Azizi N, Hojjati MR, Petrol. Sci. Technol., 36, 993 (2018)
- Khoshkharam A, Azizi N, Behbahani RM, Ghayyem MA, Petrol. Sci. Technol., 35, 667 (2017)
- Kim J, Park T, Chung E, J. Membr. Sci. Res., 7, 74 (2021)
- Selyanchyn R, Ariyoshi M, Fujikawa S, Membranes, 8, 121 (2018)
- Meshkat S, Kaliaguine S, Rodrigue D, Sep. Purif. Technol., 235, 116150 (2020)
- Dai Z, Bai L, Hval KN, Zhang X, Zhang S, Deng L, Sci. China Chem., 59, 538 (2016)
- Casadei R, Baschetti MG, Yoo MJ, Park HB, Giorgini L, Membranes, 10, 188 (2020)
- Gao J, Mao H, Jin H, Chen C, Feldhoff A, Li Y, Microporous Mesoporous Mater., 297, 110030 (2020)
- Fam W, Mansouri J, Li HY, Chen V, J. Membr. Sci., 537, 54 (2017)
- Akhtar FH, Kumar M, Peinemann KV, J. Membr. Sci., 525, 187 (2017)
- Bernardo P, Clarizia G, Polymers, 12, 253 (2020)
- Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD, Science, 356, eaa053 (2017)
- Vinoba M, Bhagiyalakshmi M, Alqaheem Y, Alomair AA, Perez A, Rana MS, Sep. Sci. Technol., 188, 431 (2017)
- Shin JE, Han SH, Ha SY, Park HB, KIC News, 21, 2 (2018)
- Ahmadi M, Janakiram S, Dai Z, Ansaloni L, Deng L, Membranes, 8, 50 (2018)
- Zhao P, Lampronti GI, Lloyd GO, Suard E, Redfern SA, J. Mater. Chem. A, 2, 620 (2014)
- Arami-Niya A, Birkett G, Zhu Z, Rufford TE, J. Mater. Chem. A, 5, 21389 (2017)
- Li T, Pan YC, Peinemann KV, Lai ZP, J. Membr. Sci., 425, 235 (2013)
- Chakrabarty T, Neelakanda P, Peinemann K, J. Mater. Sci. Res., 7, 1 (2018)
- Al-Maythalony BA, Alloush AM, Faizan M, Dafallah H, et al., ACS Appl. Mater. Interfaces, 9, 33401 (2017)
- Yeom CK, Lee JM, Hong YT, Kim SC, Membr. J., 9, 141 (1999)
- Ebrahimi M, Mansournia M, Mater. Lett., 189, 243 (2017)
- Ebrahimi A, Mansournia M, Chem. Phys., 511, 33 (2018)
- Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O'Keeffe M, Yaghi OM, PNAS, 103, 10186 (2006)
- Kang CH, Lin YF, Huang YS, Tung KL, Chang KS, Chen JT, Hung WS, Lee KR, Lai JY, J. Membr. Sci., 438, 105 (2013)
- Cai WX, Lee T, Lee M, Cho W, Han DY, Choi N, Yip ACK, Choi J, J. Am. Chem. Soc., 136(22), 7961 (2014)
- Wu X, Shahrak MN, Yuan B, Deng S, Microporous Mesoporous Mater., 190, 189 (2014)
- Zhao D, Ren JZ, Wang Y, Qiu YT, Li H, Hua KS, Li XX, Ji JM, Deng MC, J. Membr. Sci., 521, 104 (2017)
- Deng J, Dai ZD, Deng LY, Ind. Eng. Chem. Res., 59(32), 14458 (2020)
- Knozowska K, Li G, Kujawski W, Kujawa J, J. Membr. Sci., 599, 117814 (2020)
- Mosleh S, Khanbabaei G, Mozdianfard M, Hemmati M, Iran. Polym. J., 25, 977 (2016)
- Jeong S, Sohn H, Kang SW, Chem. Eng. J., 333, 276 (2018)
- Pazani F, Aroujalian A, Polym. Test., 81, 106264 (2020)
- Xiang L, Liu D, Jin H, Xu L, Wang C, Xu S, Pan Y, Li Y, Mater. Horiz., 7, 223 (2020)
- Pazirofteh M, Dehghani M, Niazi S, Mohammadi AH, Asghari M, J. Mol. Liq., 241, 646 (2017)
- Shin JE, Lee SK, Cho YH, Park HB, J. Membr. Sci., 572, 300 (2019)
- Li H, Lv W, Xu J, Hu J, Liu H, J. Membr. Sci., 614, 118426 (2020)
- Shi GM, Chen HM, Jean YC, Chung TS, Polymer, 54(2), 774 (2013)
- Wang S, Huang Z, Ru X, Wang J, J. Appl. Polym. Sci., 138(27), 50641 (2021)
- Bernardo P, Jansen JC, Bazzarelli F, Tasselli F, Fuoco A, Friess K, Izak P, Jarmarova V, Kacirkova M, Clarizia G, Sep. Purif. Technol., 97, 73 (2012)
- Murali RS, Sridhar S, Sankarshana T, Ravikumar YVL, Ind. Eng. Chem. Res., 49(14), 6530 (2010)
- Zhang L, Hu Z, Jiang J, J. Phys. Chem. C, 116, 19268 (2012)
- Noguera-D?az A, Villarroel-Rocha J, Ting VP, Bimbo N, Sapag K, Mays TJ, J. Chem. Technol. Biotechnol., 94(12), 3787 (2019)
- Hwang SW, Chung YC, Chun BC, Lee SJ, Polym. Korea, 28(5), 374 (2004)
- Xie K, Fu Q, Qiao GG, Webley PA, J. Membr. Sci., 572, 38 (2019)
- Kim H, Korean Chem. Eng. Res., 49(4), 460 (2011)
- Bondar VI, Freeman BD, Pinnau I, J. Polym. Sci. B: Polym. Phys., 38(15), 2051 (2000)
- Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)