Applied Chemistry for Engineering, Vol.32, No.4, 442-448, August, 2021
금속 폼 유로가 고분자전해질 연료전지 성능에 미치는 영향
Metal Foam Flow Field Effect on PEMFC Performance
E-mail:
초록
고분자전해질 연료전지에서 분리판 유로 형상은 유체 공급과 물 및 열 확산, 접촉 저항 등에 영향을 주는 중요한 요소이다. 본 연구에서는 25 cm2 단위 전지를 이용하여 공기극에 구리폼을 적용한 분리판을 이용하여 연료전지 성능 평가를 수행하였다. 압력과 상대습도 조건에 대한 영향을 분극 곡선과 전기화학적 임피던스 분광법을 이용하여 분석하였다. 구리폼의 ohmic 저항이 높아 사형유로형상 보다 연료전지 성능은 낮았지만, 다공성 구조로 인한 균일한 연료 분포로 활성화 손실과 물질전달 손실이 적은 것을 확인하였다. 구리폼의 소수성이 높아 물 배출이 유리한 장점이 있지만, 저가습 조건에서는 사형유로에 비하여 전해질막 수화도가 낮은 것을 확인하였다. 다공성 금속 분리판은 균일한 압력분포와 효과적인 수분 배출로 연료전지 성능을 개선할 수 있을 것으로 판단되며, 저항을 최소화할 수 있도록 금속폼의 물성에 대한 연구가 수행되어야 할 것이다.
Flow field is an important parameter for polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on the reactant supply, heat and water diffusion, and contact resistance. In this study, PEMFC performance was investigated using Cu foam flow field at the cathode of 25 cm2 unit cell. Polarization curve and electrochemical impedance spectroscopy were performed at different pressure and relative humidity conditions. The Cu foam showed lower cell performance than that of serpentine type due to its high ohmic resistance, but lower activation and concentration loss due to the even reactant distribution of porous structure. Cu foam has the advantage of effective water transport because of its hydrophobicity. However, it showed low membrane hydration at low humidity condition. The metal foam flow field could improve fuel cell performance with a uniform pressure distribution and effective water management, so future research on the properties of metal foam should be conducted to reduce electrical resistance of bipolar plate.
- Yu XW, Ye SY, J. Power Sources, 172(1), 145 (2007)
- Yu Y, Li H, Wang HJ, Yuan XZ, Wang GJ, Pan M, J. Power Sources, 205, 10 (2012)
- Yano H, Watanabe M, Iiyama A, Uchida H, Nano Energy, 29, 323 (2016)
- Wang J, Wang H, Fan Y, Engineering, 4, 352 (2018)
- Leng Y, Ming P, Yang D, Zhang C, J. Power Sources, 451, 227783 (2020)
- Shimpalee S., Lilavivat V., McCrabb H., Khunatorn Y., Lee H. -K., Lee W. -K., Weidner J. W., Int. J. Hydrog. Energy, 41(31), 13688 (2016)
- Ijaodola O, Ogungbemi E, Khatib FN, Wilberforce T, Ramadan M, El- Hassan Z, Thompson J, Olabi AG, Energies, 11, 3203 (2018)
- Lee S, Jeong H, Ahn B, Lim T, Son Y, Int. J. Hydrog. Energy, 33(20), 5691 (2008)
- Akbari MH, Rismanchi B, Renew. Energy, 33(8), 1775 (2008)
- Lim BH, Majlan EH, Daud WRW, Husaini T, Rosli MI, Ionics, 22 (2016)
- Velisala V, Srinivasulu GN, Arab. J. Sci. Eng., 43, 1225 (2018)
- Mason TJ, Millichamp J, Neville TP, El-kharouf A, Pollet BG, Brett DJL, J. Power Sources, 219, 52 (2012)
- Banerjee R., Hinebaugh J., Liu H., Yip R., Ge N., Bazylak A., Int. J. Hydrog. Energy, 41(33), 14885 (2016)
- Muirhead D, Banerjee R, Lee J, George MG, Ge N, Liu H, Chevalier S, Hinebaugh J, Han K, Bazylak A, Int. J. Hydrog. Energy, 42(49), 29472 (2017)
- Tsai BT, Tseng CJ, Liu ZS, Wang CH, Lee CI, Yang CC, Lo SK, Int. J. Hydrog. Energy, 37(17), 13060 (2012)
- Ahn CY, Lim MS, Hwang W, Kim S, Park JE, Lim J, Choi I, Cho YH, Sung YE, Fuel Cell, 17 (2017)
- Kim M, Kim C, Sohn Y, Fuel Cell, 18 (2018)
- Tan WC, Saw LH, Thiam HS, Xuan J, Cai Z, Yew MC, Renew. Sust. Energ. Rev., 96, 181 (2018)
- Ting FP, Hsieh CW, Weng WH, Lin JC, Int. J. Hydrog. Energy, 37(18), 13696 (2012)
- Lee YH, Li SM, Tseng CJ, Su CY, Lin SC, Jhuang JW, Int. J. Hydrog. Energy, 42(34), 22201 (2017)
- Zhang Y, Tao Y, Shao J, J. Power Sources, 492, 229664 (2021)
- Shin DK, Yoo JH, Kang DG, Kim MS, Renew. Energy, 115, 663 (2018)
- Park JE, Hwang W, Lim MS, Kim S, Ahn CY, Kim OH, Shim JG, Lee DW, Lee JH, Cho YH, Sung YE, Int. J. Hydrog. Energy, 44(39), 22074 (2019)
- Kang DG, Lee DK, Choi JM, Shin DK, Kim MS, Renew. Energy, 156, 931 (2020)
- Liu RL, Zhou W, Li SL, Li FH, Ling WS, Int. J. Hydrog. Energy, 45(35), 17833 (2020)
- Fly A, Butcher D, Meyer Q, Whiteley M, Spencer A, Kim C, Shearing PR, Brett DJL, Chen R, J. Power Sources, 395, 171 (2018)
- Jo A, Ju H, Int. J. Hydrog. Energy, 30, 14012 (2018)