화학공학소재연구정보센터
Macromolecular Research, Vol.29, No.8, 551-561, August, 2021
Preparation of Re-Dispersible Metal-Oxide Nanocomposite Particles Using Ionomers with Different EW for Enhanced Radical Scavenging Performance
E-mail:
Inorganic free radical scavengers are used to suppress the radical attack and chemical degradation of perfluorosulfonic acid (PSFA) ionomer membranes. However, the commercially available radical scavengers have the shortcomings of nano dispersibility and formation of ionically crosslinked complexes with PSFA chains resulting in aggregation and reduced chemical stability. In this study, a new strategy to synthesize highly dispersible metal oxide-ionomer (MO-I) nanocomposite particles using various equivalent weight (EW) of ionomers, is addressed for obtaining effective radical scavengers which ensure the re-dispersibility and colloidal stability in the ionomer dispersions. The effect of the EW of the ionomer and selection of metal precursors on the solubility of metal precursors in the ionomer solution, the solubility of ionomer in the solvent, re-dispersibility, and colloidal stability of MO-I nanocomposite particles in the ionomer solution were also studied. Under given conditions, it was proved that MO-I nanocomposite particles prepared by using cerium nitrate precursor showed the best radical scavenging performance in the presence of EW800 ionomer solution.
  1. Kreuer KD, Solid State Ion., 97(1-4), 1 (1997)
  2. Kreuer KD, Paddison SJ, Spohr E, Schuster M, Chem. Rev., 104(10), 4637 (2004)
  3. de Bruijn FA, Dam VAT, Janssen GJM, Fuel Cells, 8, 3 (2008)
  4. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC, Appl. Energy, 88(4), 981 (2011)
  5. Wu JF, Yuan XZ, Martin JJ, Wang HJ, Zhang JJ, Shen J, Wu SH, Merida W, J. Power Sources, 184(1), 104 (2008)
  6. Zhao H, Burke AF, J. Power Sources, 186(2), 408 (2009)
  7. Danilczuk M, Coms FD, Schlick S, J. Phys. Chem. B, 113(23), 8031 (2009)
  8. Ishimoto T, Koyama M, Membranes, 2, 395 (2012)
  9. Luo XY, Ghassemzadeh L, Holdcroft S, Int. J. Hydrog. Energy, 40(46), 16714 (2015)
  10. Zato M, Roziere J, Jones DJ, Sustain. Energy Fuels, 1, 409 (2017)
  11. Tinh VDC, Kim D, J. Membr. Sci., 613, 118517 (2020)
  12. Rui Z, Liu J, Prog. Nat. Sci-Mater., 30, 732 (2020)
  13. Kim K, Bae J, Lim MY, Heo P, Choi SW, Kwon HH, Lee JC, J. Membr. Sci., 525, 125 (2017)
  14. Parnian MJ, Rowshanzamir S, Prasad AK, Advani SG, J. Membr. Sci., 556, 12 (2018)
  15. Oh SI, Lee SY, Ko JJ, Han JH, Kim HJ, ECS Meet. Abstr., 1, 1785 (2018)
  16. Wang L, Advani SG, Prasad AK, Electrochim. Acta, 109, 775 (2013)
  17. Coms FD, Liu H, Owejan J, ECS Trans, 16, 1735 (2008)
  18. Lee H, Han M, Choi YW, Bae B, J. Power Sources, 295, 221 (2015)
  19. Gubler L, Koppenol WH, Kinetic J. Electrochem. Soc., 159, 211 (2011)
  20. Trogadas P, Parrondo J, Ramani V, ACS Appl. Mater. Interfaces, 4, 5098 (2012)
  21. Wang Z, Tang HL, Zhang HJ, Lei M, Chen R, Xiao P, Pan M, J. Membr. Sci., 421, 201 (2012)
  22. Song CH, Park JS, Energies, 12, 549 (2019)
  23. Park JS, Choi YW, Chem. Lett., 42(9), 998 (2013)
  24. Uchida H, Ueno Y, Hagihara H, Watanabe M, J. Electrochem. Soc., 150, 57 (2002)
  25. Park JS, Shin MS, Kim CS, Curr. Opin. Electrochem., 5, 43 (2017)
  26. Radev I, Koutzarov K, Pfrang A, Tsotridis G, Int. J. Hydrog. Energy, 37(16), 11862 (2012)
  27. Suzuki A, Sen U, Hattori T, Miura R, Nagumo R, Tsuboi H, Hatakeyama N, Endou A, Takaba H, Williams MC, Miyamoto A, Int. J. Hydrog. Energy, 36(3), 2221 (2011)
  28. Sicard C, Perullini M, Spedalieri C, Coradin T, Brayner R, Livage J, Jobbagy M, Bilmes SA, Chem. Mater., 23, 1374 (2011)
  29. Aguirre M, Paulis M, Leiza JR, J. Mater. Chem. A, 1, 3155 (2013)
  30. Pinna A, Figus C, Lasio B, Piccinini M, Malfatti L, Innocenzi P, ACS Appl. Mater. Interfaces, 4, 3916 (2012)
  31. Tang HL, Pan M, J. Phys. Chem. C, 112, 11556 (2008)
  32. Tang H, Wan Z, Pan M, Jiang SP, Electrochem. Commun., 9, 2003 (2007)
  33. Pan JJ, Zhang HN, Chen W, Pan M, Int. J. Hydrog. Energy, 35(7), 2796 (2010)
  34. Li K, Ye GB, Pan JJ, Zhang HN, Pan M, J. Membr. Sci., 347(1-2), 26 (2010)
  35. Zhou KB, Wang X, Sun XM, Peng Q, Li YD, J. Catal., 229(1), 206 (2005)
  36. Oh H, Kim S, Aerosol Sci., 38, 1185 (2007)
  37. Kamruddin M, Ajikumar PK, Nithya R, Tyagi AK, Raj B, Scr. Mater., 50, 417 (2004)
  38. Xu JX, Li GS, Li LP, Mater. Res. Bull., 43(4), 990 (2008)
  39. Ndifor EN, Garcia T, Solsona B, Taylor SH, Appl. Catal. B: Environ., 76(3-4), 248 (2007)
  40. Hadi A, Yaacob II, Mater Lett., 61, 93 (2007)
  41. Yu JC, Zhang LZ, Lin J, J. Colloid Interface Sci., 260(1), 240 (2003)
  42. Petrucci RH, et al., General Chemistry: Principles and Modern Applications, Upper Saddle River, New Jersey, 2011.
  43. Nathan HD, Henrickson C, Chemistry, New York, Wiley, 2001.
  44. Xie Z, Navessin T, Zhao X, Adachi M, Holdcroft S, Mashio T, Ohma A, Shinohara K, ECS Trans., 16, 1811 (2008)
  45. So M, Ohnishi T, Park K, Ono M, Tsuge Y, Inoue G, Int. J. Hydrog. Energy, 44(54), 28984 (2019)
  46. Welch C, Labouriau A, Hjelm R, Orler B, Johnston C, Kim YS, ACS Macro Lett., 1, 1403 (2012)
  47. Yamaguchi M, Matsunaga T, Amemiya K, Ohira A, Hasegawa N, Shinohara K, Ando M, Yoshida T, J. Phys. Chem. B, 118(51), 14922 (2014)
  48. Jiang SH, Xia KQ, Xu G, Macromolecules, 34(22), 7783 (2001)
  49. Rubatat L, Gebel G, Diat O, Macromolecules, 37(20), 7772 (2004)
  50. Jalani NH, Datta R, J. Membr. Sci., 264(1-2), 167 (2005)
  51. Grot WG, Macromol. Symp., 82, 161 (1994)
  52. Mabuchi T, Huang SF, Tokumasu T, Macromolecules, 53(9), 3273 (2020)
  53. Dietze EM, Plessow PN, Studt F, J. Phys. Chem. C, 123, 25464 (2019)
  54. Welch C, Labouriau A, Hjelm R, Orler B, Johnston C, Kim YS, ACS Macro Lett., 1, 1403 (2012)
  55. Moore RB, Martin CR, Macromolecules, 21, 1334 (1988)
  56. Aldebert P, Gebel G, Loppinet B, Nakamura N, Polymer, 36(2), 431 (1995)
  57. Szajdzinskapietek E, Schlick S, Plonka A, Langmuir, 10(4), 1101 (1994)
  58. Lousenberg RD, J. Polym. Sci. B: Polym. Phys., 43(4), 421 (2005)
  59. Ayers PW, Anderson JSM, Rodriguez JI, Jawed Z, Phys. Chem. Chem. Phys., 7, 1918 (2005)
  60. Huheey JE, Keiter EA, Keiter RL, in Inorganic Chemistry: Principles of Structure and Reactivity, Harper Collins, New York, 1993.
  61. Zhao D, Yi BL, Zhang HM, Yu HM, J. Membr. Sci., 346(1), 143 (2010)
  62. a)D'Urso C, et al., J. Power Sources, 301, 317 (2016). (b) Tanuma T, Itoh T, J. Power Sources, 305, 17 (2016).
  63. Ahn JH, Ali MI, LimJH, Park Y, Park IK, Duchesne D, Chen L, Kim JY, Lee CH, Membranes, 11, 143 (2021)
  64. Beche E, Charvin P, Perarnau D, Abanades S, Flamant G, Surf. Interface Anal., 40, 264 (2008)
  65. Qiu L, Liu F, Zhao L, Yao MY, J. Appl. Surf. Sci., 252, 4931 (2006)
  66. Larachi F, Pierre J, Adnot A, Bernis A, Appl. Surf. Sci., 195(1-4), 236 (2002)
  67. Chung RJ, Hsieh MF, Panda RN, Chin TS, Surf. Coat. Technol., 165, 194 (2003)
  68. Burroughs P, Hamnett A, Orchard AF, Thornton G, J. Chem. Soc.-Dalton Trans., 17, 1686 (1976)
  69. Kotani A, Jo T, Parlebas JC, Adv. Phys., 37, 37 (1988)
  70. Shen J, Liu A, Tu Y, Electrochim. Acta, 78, 22 (2012)
  71. Dubal DP, Dhawale DS, Salunkhe RR, Lokhande CD, J. Electrochem. Soc., 157, 812 (2010)
  72. Barrera A, Tzompantzi F, Molina JC, Casillas JE, Hernandez RP, Godinez SU, Velasquez C, Alatorre JA, RSC Adv., 8, 3108 (2018)
  73. Barr TL, J. Phys. Chem., 82, 1801 (1978)
  74. Strohmeier B, Surf. Sci. Spectra, 3, 135 (1995)
  75. Wang ZQ, Tian SK, Shao BW, Li SD, Li L, Yang J, J. Power Sources, 414, 327 (2019)
  76. Lee SS, Song W, Cho M, Puppala HL, Nguyen P, Zhu H, Segatori L, Colvin VL, ACS Nano, 7, 9693 (2013)