화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.33, No.3, 283-291, August, 2021
The influence of the negative wake on the deformation and breakup of viscoelastic droplets
E-mail:
Experiments were performed using visual and PIV techniques in order to study the appearance of a negative wake as well as its influence upon the deformation and breakup of droplets rising in viscoelastic fluids. In this report, Newtonian and viscoelastic drops were injected through different viscoelastic fluids; the deformation of the droplets was then followed and analyzed. In the case of Newtonian drops traveling through a viscoelastic fluid, a tail appears which later breaks into satellite droplets; a negative wake is present on the sides of the tail. The viscoelastic drops also exhibit a tail which is more resistant to rupture and the negative wake appears after the tail; additionally, a bump appears at the tip of the tail which enhances its elongation and determines the onset of breakup.
  1. Arigo MT, McKinley GH, Rheol. Acta, 37(4), 307 (1998)
  2. Bisgaard C, J. Non-Newton. Fluid Mech., 12, 283 (1983)
  3. Brinson HF, Brinson LC, 2008, Polymer Engineering Science and Viscoelasticity: An Introduction, 2008.
  4. Broadbent J, Mena B, Chem. Eng. J., 8, 11 (1974)
  5. Bush MB, J. Non-Newton. Fluid Mech., 49, 103 (1993)
  6. Campo-Deano L, Dullens RPA, Aarts DGAL, Pinho FT, Oliveira MSN, Biomicrofluidics, 7, 034102 (2013)
  7. Carril F, Influencia de la estela negativa en la deformaciny ruptura de gotas viscoelasticas, 2019.
  8. Caswell B, Manero O, Mena B, Rheol. Rev., 2004, 197 (2004)
  9. Cherdhirankorn T, Lerdwijitjarud W, Sirivat A, Larson RG, Rheol. Acta, 43(3), 246 (2004)
  10. Clasen C, Eggers J, Fontelos MA, Li J, McKinley GH, J. Fluid Mech., 556, 283 (2006)
  11. Dou HS, Phan-Thien N, Rheol. Acta, 42(5), 383 (2003)
  12. Fraggedakis D, Pavlidis M, Dimakopoulos Y, Tsamopoulos J, J. Fluid Mech., 789, 310 (2016)
  13. Frank X, Li HZ, Phys. Rev. E, 74, 056307 (2006)
  14. Harlen OG, J. Non-Newton. Fluid Mech., 108(1-3), 411 (2002)
  15. Hassager O, Nature, 279, 402 (1979)
  16. Hou J, Liu Z, Zhang S, Yue X, Yang J, J. Pet. Sci. Eng., 47, 219 (2005)
  17. Imaizumi Y, Kunugi T, Yokomine T, Kawara Z, Chem. Eng. Sci., 120, 167 (2014)
  18. JOSEPH DD, FENG J, J. Non-Newton. Fluid Mech., 57(2-3), 313 (1995)
  19. Kemiha M, Frank X, Poncin S, Li HZ, Chem. Eng. Sci., 61(12), 4041 (2006)
  20. Kitamura Y, Takahashi T, Can. J. Chem. Eng., 60, 732 (1982)
  21. Manero O, Mena B, J. Non-Newton. Fluid Mech., 9, 379 (1981)
  22. Matsumura Y, Kang IJ, Sakamoto H, Motoki M, Mori T, Food Hydrocolloids, 7, 227 (1993)
  23. Mena B, Manero O, Leal LG, J. Non-Newton. Fluid Mech., 26, 247 (1987)
  24. Mendoza-Fuentes AJ, Montiel R, Zenit R, Manero O, Phys. Fluids, 21, 033104 (2009)
  25. Milliken WJ, Leal LG, J. Non-Newton. Fluid Mech., 40, 355 (1991)
  26. Mukherjee S, Sarkar K, J. Non-Newton. Fluid Mech., 160(2-3), 104 (2009)
  27. Ortiz SL, Lee JS, Figueroa-Espinoza B, Mena B, Rheol. Acta, 55(11-12), 879 (2016)
  28. Plog J, Wu J, Dias YJ, Mashayek F, Cooper LF, Yarin AL, Phys. Fluids, 32, 08311 (2020)
  29. SATRAPE JV, CROCHET MJ, J. Non-Newton. Fluid Mech., 55(1), 91 (1994)
  30. Skelland AHP, Raval VK, Can. J. Chem. Eng., 50, 41 (1972)
  31. Soto E, Goujon CG, Zenit R, Manero O, Phys. Fluids, 18, 121510 (2006)
  32. Suhr J, Koratkar N, Keblinski P, Ajayan P, Nat. Mater., 4(2), 134 (2005)
  33. Zenit R, Feng JJ, Annu. Rev. Fluid Mech., 50, 505 (2018)