Journal of Industrial and Engineering Chemistry, Vol.102, 95-102, October, 2021
Ultra-small Cu.Ni nanoalloy as a high-performance supercapacitor electrode material and highly durable methanol oxidation electrocatalyst
E-mail:,
Ultra-small, pristine nanoalloy particles have attracted considerable attention for applications ranging from electrocatalysis to electrochemical energy storage owing to their high conductivity and large specific surface area. However, their practical deployment relies on a controllable process is low-cost, scalable, and results in numerous monodispersed particles. In this work, we demonstrate an alcohothermal process that is scalable to obtain ultra-small (r < 4 nm) and monodispersed (~4.1 ± 0.5 nm) Cu.Ni nanoalloy particles. Ethylene-glycol was used as a reaction medium that also acts as an in situ reducing and capping agent responsible for nanoalloy formation. The prepared nanoalloy particles were electrochemically tested for supercapacitor and methanol-oxidation applications. The nanoalloy electrode showed a desirable specific capacitance of 858F g-1 at a current density of 1 Ag-1 with good cyclic stability. As a catalyst for methanol-oxidation, the nanoalloy showed a high current density of ~191.5 mA cm-2. The methanoloxidation reaction current reached 156 mA while maintaining 83% of its initial value, even after 300 cycles. The observed superior electrochemical performance is attributed to the high conductivity, fast electron transport, and large specific surface associated with ultra-small Cu-Ni nanoalloy particles.
- Liu C, Li F, Ma LP, Cheng HM, Adv. Mater., 22(8), E28 (2010)
- Wang H, Yun Y, Guo L, Adv. Eng. Mater., 7, 160170 (2017)
- Singu BS, Goda ES, Yoon KR, J. Ind. Eng. Chem., 97, 239 (2021)
- Naveen U, Ghosh S, Thomas T, ChemElectroChem, 6, 1255 (2019)
- Kim YK, Shin KY, J. Ind. Eng. Chem., 94, 122 (2021)
- Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna PL, Grey CP, Dunn B, Simon P, Nat. Energy, 1, 1 (2016)
- Lee KS, Phiri I, Park JH, Ko JM, Kim SH, J. Ind. Eng. Chem., 97, 250 (2021)
- Abdullah N, Kamarudin SK, Shyuan LK, Nanoscale Res. Lett., 13(1), 1 (2018)
- Madaswamy SL, Alothman AA, AL-Anazy MM, Ifseisi AA, Alqahtani KN, Natarajan SK, Angaiah S, Ragupathy D, J. Ind. Eng. Chem., 97, 79 (2021)
- Khouchaf A, Takky D, Chbihi MEM, Benmokhtar S, J. Mater. Sci. Chem. Eng., 4(2), 97 (2016)
- Roy A, Jadhav HS, Cho M, Seo JG, J. Ind. Eng. Chem., 76, 515 (2019)
- Ali S, Ahmed R, Sohail M, Khan SA, Ansari MS, J. Ind. Eng. Chem., 28, 344 (2015)
- Jiang J, et al., Adv. Sustain. Syst., 1700110 (2017).
- Fu M, Zhu Z, Zhang Z, Zhuang Q, Chen W, Liu Q, J. Alloy. Compd., 846 (2020)
- Fu M, Zhu Z, Zhuang Q, Zhang Z, Chen W, Liu Q, Ceram. Int., 46, 28200 (2020)
- Fu M, Zhuang Q, Zhu Z, Zhang Z, Chen W, Liu Q, Yu H, J. Alloy. Compd., 862 (2021)
- Fu M, Zhang ZH, Zhu ZT, Zhuang QR, Chen W, Yu H, Liu QY, J. Colloid Interface Sci., 588, 795 (2021)
- Zhu Z, Zhang Z, Zhang Q, Gao F, Liu Q, Zhu X, Fu M, J. Power Sources, 492 (2021)
- Umeshbabu E, Rao GR, Electrochim. Acta, 213, 717 (2016)
- Umeshbabu E, Rajeshkhanna G, Justin P, Rao GR, RSC Adv., 5(82), 66657 (2015)
- Umeshbabu E, Rajeshkhanna G, Justin P, Rao GR, Mater. Chem. Phys., 165, 235 (2015)
- Rajeshkhanna G, Umeshbabu E, Rao GR, J. Chem. Sci., 129(2), 157 (2017)
- Yang QJ, Liu Y, Yan M, Lei Y, Shi WD, Chem. Eng. J., 370, 666 (2019)
- Ma X, Ren Q, Wang H, Ji S, Ionics, 24(2), 529 (2018)
- Kong K, Hyun J, Kim Y, Kim W, Kim D, J. Power Sources, 437 (2019)
- Yuda A, Ashok A, Kumar A, Catal. Rev., 1 (2020).
- Wu S, Liu J, Tian Z, Cai T, Ye Y, Yuan Q, Liang C, A.C.S. Appl, Mater. Interfaces, 7(41), 22935 (2015)
- Wasmus S, Kuver A, J. Electroanal. Chem., 461(1-2), 14 (1999)
- Ahmed J, Ramanujachary KV, Lofland SE, Furiato A, Gupta G, Shivaprasad SM, Ganguli AK, Colloids Surf. Physicochem. Eng. Asp., 331(3), 206 (2008)
- Wu P, Xu Y, Zhan J, Li Y, Xue H, Pang H, Small, 14(42), 180147 (2018)
- Shan S, Luo J, Wu J, Kang N, Zhao W, Cronk H, Zhao Y, Joseph P, Petkov V, Zhong CJ, RSC Adv., 4(80), 42654 (2014)
- Chen QQYW, J. Phys. Chem. C, 113, 7497 (2009)
- Balakrishnan G, Sahoo SK, Chowdhury BK, Umapathy S, Faraday Discuss., 145, 443 (2010)
- Schiffman JD, Balakrishna RG, Sens. Actuators B-Chem., 258, 1191 (2018)
- Zhang S, Zhang Z, Zhang X, Zhang J, PloS One, 14(7) (2019)
- Stergar J, Ban I, Drofenik M, Ferk G, Makovec D, IEEE Trans. Magn., 48(4), 1344 (2012)
- Holzwarth U, Gibson N, Nat. Nanotechnol., 6(9), 534 (2011)
- Saeed GHM, Radiman S, Gasaymeh SS, Lim HN, Huang NM, J. Nanomater. (2010 (2010).).
- Xia T, Wang J, Wu C, Meng F, Shi Z, Lian J, Feng J, Meng J, CrystEngComm, 14(18), 5741 (2012)
- Sun L, Deng Y, Yang Y, Zhiqiang X, Xie K, Liao L, RSC Adv., 7, 17781 (2017)
- Rana S, Jonnalagadda SB, RSC Adv., 7(5), 2869 (2017)
- Bhusankar T, Thomas PE, Tiju Superlattices Microstruct., 116, 122 2018.
- Bhusankar T, Edamana P, Thomas T, J. Mol. Liq., 265, 771 (2018)
- Talluri B, Thomas T, Chem. Phys. Lett., 685, 84 (2017)
- Wu D, Zhang W, Cheng D, A.C.S. Appl, Mater. Interfaces, 9(23), 19843 (2017)
- Wang X, Zhang B, Zhang W, Yu M, Cui L, Cao X, Liu J, Sci. Rep., 7(1), 1 (2017)
- Pieta IS, Rathi A, Pieta P, Nowakowski R, Holdynski M, Pisarek M, Kaminska A, Gawande MB, Zboril R, Appl. Catal. B: Environ., 244, 272 (2019)
- Kurtan U, Aydın H, Buyuk B, Sahinturk U, Almessiere MA, Baykal A, J. Energy Storage, 32 (2020)
- Li Y, Shang X, Song C, Chen J, Li Y, Huang M, Meng F, Microporous Mesoporous Mater., 309 (2020)
- Luan YX, Nie GD, Zhao XW, Qiao N, Liu XC, Wang H, Zhang XN, Chen YQ, Long YZ, Electrochim. Acta, 308, 121 (2019)
- Santhosh R, Raman SRS, Krishna SM, Ravuri SS, Sandhya V, Ghosh S, Sahu NK, Punniyakoti S, Karthik M, Kollu P, Jeong SK, Grace AN, Electrochim. Acta, 276, 284 (2018)
- An Y, Ijaz H, Huang M, Qu J, Hu S, Dalton Trans., 49(5), 1646 (2020)