화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.102, 186-194, October, 2021
Hydrogenation of 5-hydroxymethylfurfural into 2,5-bis (hydroxymethyl)furan over mesoporous Cu.Al2O3 catalyst: From batch to continuous processing
E-mail:
Biomass-derived monomers have received growing attention from sustainable polymer industry. Particularly, diol compounds can be formed from furfural (FAL) and 5-hydroxymethylfurfural(HMF). Herein, the mesoporous Cu-Al2O3 catalyst (meso-CuA) prepared by solvent-deficient precipitation was evaluated to be efficient in selective hydrogenation of FAL and HMF to furfuryl alcohol to 2,5-bis (hydroxymethyl)furan (BHMF), respectively, at temperatures of lower than 100 °C and high H2 pressures. Owing to unique pore structure and small-sized copper nanoparticles entangled with alumina, meso-CuA turned out to be superior to other supported Cu catalysts in the hydrogenation of HMF to BHMF. Moreover, meso-CuA showed highly durable performance at the BHMF yield of higher than 90% at 100 °C, 50 bar H2, and weight hourly space velocity of 0.2 h-1 over time-on-stream of 100 h. The stability was also confirmed with the HMF feed containing 1 wt% of water that proved to have more considerable effect than other possible impurities. Centering around a catalytic reactor packed with meso-CuA, a process scheme from HMF feed to pure BHMF solid was developed at a production scale of 100 kg per day. The present results can contribute to designing commercial process of BHMF production from HMF and further, real biomass.
  1. Li G, Li N, Zheng M, Li S, Wang A, Cong Y, Wang X, Zhang T, Green Chem., 18, 3607 (2016)
  2. Kieber RJ, Silver SA, Kennemur JG, Polym. Chem., 8, 4822 (2017)
  3. Jiang Y, Woortman AJ, van Ekenstein GRA, Petrovic DM, Loos K, Mcromoleules, 15, 2482 (2014)
  4. Vijjamarri S, Streed S, Serum EM, Sibi MP, Du G, ACS Sustainable Chem. Eng., 6, 2491 (2018)
  5. Zeng C, Seino H, Ren J, Hatanaka K, Yoshie N, Marcromoleules, 46, 1794 (2013)
  6. Hu F, La Scala JJ, Sadler JM, Palmese GR, Marcromoleules, 47, 3332 (2014)
  7. Gopalakrishnan P, Narayan-Sarathy S, Ghosh T, Mahajan K, Belgacem MN, J. Polym. Res., 21, 340 (2014)
  8. Mittal A, Pilath HM, Johnson DK, Energy Fuels, 34(3), 3284 (2020)
  9. Shen G, Andrioletti B, Queneau Y, Curr. Opin. Green Sustain. Chem., 26 (2020)
  10. Perez GP, Mukherjee A, Dumont MJ, J. Ind. Eng. Chem., 70, 1 (2019)
  11. Mishra DK, Cho JK, Kim YJ, J. Ind. Eng. Chem., 60, 513 (2018)
  12. Gupta SSR, Vinu A, Kantam ML, ChemPlusChem, 86, 259 (2021)
  13. Zou L, Zheng Z, Tan H, Xu Q, Ouyang J, RSC Adv., 10, 21781 (2020)
  14. Liu LJ, Wang ZM, Lyu YJ, Zhang JF, Huang Z, Qi T, Si ZB, Yang HQ, Hu CW, Catal, Sci. Technol., 10, 278 (2020)
  15. Elsayed I, Jackson MA, Hassan EB, ACS sustainable Chem. Eng., 8, 1774 (2020)
  16. Arias KS, Carceller JM, Climent MJ, Corma A, Lborra S, ChemSusChem, 13, 1864 (2020)
  17. de Jong E, et al., Biobased Monomers, Polymers, and Materials, American Chemical Society, Washington, DC, pp.1 2012.
  18. Yang ZY, Wen M, Zong MH, Li N, Catal. Commun., 139, 105979 (2020)
  19. Hu L, Xu J, Zhou S, He A, Tang X, Lin L, Xu J, Zhao Y, ACS Catal., 8, 2959 (2018)
  20. Zhang J, Wang T, Tang X, Peng L, Wei J, Lin L, BioResources, 13(3), 7137 (2018)
  21. Millan A, Sals N, Torres M, Canela-Garayoa R, Catalysts, 11, 216 (2021)
  22. Xia ZH, Zong MH, Li N, Enzyme Microb. Technol., 134 (2020)
  23. Mishra DK, Lee HJ, Truong CC, Kim J, Suh YW, Baek J, Kim YJ, Mol. Catal., 484 (2019)
  24. Yao S, Wang X, Jiang Y, Wu F, Chen X, Mu X, ACS Sustainable Chem. Eng., 2, 173 (2014)
  25. Chatterjee M, Ishizaka T, Kawanami H, Green. Chem., 16, 4734 (2014)
  26. Kumalaputri AJ, Bottari G, Erne PM, Heeres HJ, Barta K, ChemSusChem, 7, 2266 (2014)
  27. Zhu Y, Kong X, Zheng H, Ding G, Zhu Y, Li YW, Catal. Sci. Technol., 5, 4208 (2015)
  28. Bottari G, Kumpalaputri AJ, Krawczyk KK, Feringa BL, Heeres HJ, Barta K, ChemSusChem, 8, 1323 (2015)
  29. Upare PP, Hwang YK, Hwang DW, Green Chem., 20, 879 (2018)
  30. Liu Y, Mellmer MA, Alonso DM, Dumesic JA, ChemSusChem, 8, 3983 (2015)
  31. Lima S, Chadwick D, Hellgardt K, RSC Adv., 7, 31401 (2017)
  32. Yu L, He L, Chen J, Zheng J, Ye L, Lin H, Yuan Y, ChemCatChem, 7, 1701 (2015)
  33. O’Driscoll A, Curtin T, Hernandez WY, Voort PVD, Leahy JJ, Org. Process. Res. Dev., 20, 1917 (2016)
  34. Chen X, Zhang L, Zhnag B, Guo X, Mu X, Sci. Rep., 6, 28558 (2016)
  35. Park S, Kannapu HPR, Jeong C, Kim J, Suh YW, ChemCatChem, 12, 105 (2020)
  36. Kijenski J, Winiarek P, Paryjczak T, Lewicki A, Mikolajska A, Appl. Catal. A: Gen., 233(1-2), 171 (2002)
  37. Toledo F, Ghampson IT, Sepulved C, Garcia R, Fierro JLG, Videla A, Serpell R, Escalona N, Fuel, 242, 532 (2019)
  38. Oh J, Bathula HB, Park JH, Suh YW, Commun. Chem., 2, 68 (2019)
  39. Bathula HB, Oh J, Jo Y, Suh YW, Catalysts, 9, 719 (2019)
  40. Rao KTV, Hu Y, Yuan Z, Zhang Y, Xu CC, Appl. Catal. A: Gen., 609 (2021)
  41. Cho K, Lee SM, Kim HJ, Ko YJ, Son SU, Chem. Commun., 55, 3697 (2019)
  42. Chen GY, Wu LB, Fan H, Li BG, Ind. Eng. Chem. Res., 57(48), 16172 (2018)
  43. Overton JC, Engelberth AS, Mosier NS, ACS Sustainable Chem. Eng., 8, 18 (2020)