Clean Technology, Vol.27, No.3, 261-268, September, 2021
석탄계 활성탄에 의한 Acid Black 1 염료의 흡착에 있어서 평형, 동력학, 및 열역학적 특성
Characteristics of Equilibrium, Kinetics, and Thermodynamics for Adsorption of Acid Black 1 Dye by Coal-based Activated Carbon
E-mail:
초록
석탄계 입상 활성탄(CGAC)에 의한 acid black 1 (AB1) 염료의 평형, 동력학 및 열역학적 특성을 초기농도, 접촉 시간, 온도 및 pH 를 흡착변수로 하여 조사하였다. 활성탄에 의한 AB1의 흡착반응은 산성에서는 활성탄의 표면(H+)과 AB1이 가지고 있는 sulfite ion (SO3-), nitrite ion (NO2-) 사이의 정전기적 인력에 의해 일어났고, 최고 흡착률은 pH 3에서 97.7%였다. AB1의 등온 데이터는 Freundlich 등온식에 가장 잘 맞았으며, 계산된 분리계수(1/n) 값으로부터 활성탄에 의한 AB1의 흡착이 효과적인 처리과정이 될 수 있음을 알았다. Temkin 식의 흡착열 관련상수의 값은 물리 흡착 공정(< 20 J mol-1)임을 나타냈다. 동역학 실험에서는 유사 2차 모델이 유사 1차 모델보다 더 일관성이 있었으며 추정된 평형 흡착량은 오차 백분율의 9.73% 이내에서 잘 일치하였다. 입자내 확산이 흡착 과정에서 속도 조절 단계였다. 활성화 에너지와 엔탈피 변화값으로부터 흡착반응이 물리흡착으로 진행되는 흡열반응임을 확인하였다. 엔트로피 변화는 활성탄 표면에서 AB1의 흡착이 일어나는 동안 고-액 계면에서 활발한 반응에 의해 엔트로피가 증가하는 것으로 나타났다. 자유에너지 변화는 온도증가와 함께 흡착반응의 자발성이 더 커지는 것을 나타냈다.
Equilibrium, kinetics, and thermodynamics of adsorption of acid black 1 (AB1) by coal-based granular activated carbon (CGAC) were investigated with the adsorption variables of initial concentration of dye, contact time, temperature, and pH. The adsorption reaction of AB1 by activated carbon was caused by electrostatic attraction between the surface (H+) of activated carbon and the sulfite ions (SO3 -) and nitrite ions (NO2-) possessed by AB1, and the degree of reaction was highest at pH 3 (97.7%). The isothermal data of AB1 were best fitted with Freundlich isotherm model. From the calculated separation factor (1/n) of Freundlich, it was confirmed that adsorption of AB1 by activated carbon could be very effective. The heat of adsorption in the Temkin model suggested a physical adsorption process (< 20 J mol-1). The kinetic experiment favored the pseudo second order model, and the equilibrium adsorption amount estimated from the model agreed to that given by the experiments (error < 9.73% ). Intraparticle diffusion was a rate controlling step in this adsorption process. From the activation energy and enthalpy change, it was confirmed that the adsorption reaction is an endothermic reaction proceeding with physical adsorption. The entropy change was positive because of an active reaction at the solid-liquid interface during adsorption of AB1 on the activated carbon surface. The free energy change indicated that the spontaneity of the adsorption reaction increased as the temperature increased.
- Malinauskiene L, Bruze M, Ryberg K, Zimerson E, Isaksson M, Contact derm., 68(2), 65 (2013)
- European Commission, Scientific Committee on Cosumer Safety, Acid Black 1, (2009).
- Sun DH, Zhang XD, Wu YD, Liu X, J. Hazard. Mater., 181(1-3), 335 (2010)
- Sankar M, Sekaran G, Sadulla S, Ramasami T, J. Chem. Technol. Biotechnol., 74(4), 337 (1999)
- Hoseinzadeh E, Rahmanie AR, Asgari G, Mckay G, Dehghanian R, J. Sci. Ind. Res., 71, 682 (2012)
- Peng XM, Hu XJ, Fu DF, Lam FLY, Appl. Surf. Sci., 294, 71 (2014)
- Fang R, He WX, Xue HY, Chen WJ, React. Funct. Polym., 102, 1 (2016)
- Lee JJ, Appl. Chem. Eng., 32(3), 283 (2021)
- Marrakchi F, Ahmed MJ, Khanday WA, Asif M, Hameed BH, J. Taiwan Inst. Chem. Eng., 71, 47 (2017)
- Lee JJ, Clean Technol., 26(2), 122 (2020)
- Lee JJ, Clean. Technol., 25(1), 56 (2019)
- Afshin S, Mokhtari SA, Vosoughi M, Sadeghi H, Rashtbari Y, Data Brief, 21, 1008 (2018)
- Akbarnejad S, Amooey AA, Ghasemi S, Microchem J., 149, 103966 (2019)
- Fu JW, Zhu JH, Wang ZW, Wang YH, Wang SM, Yan RQ, Xu Q, J. Colloid Interface Sci., 542, 123 (2019)
- Kim YS, Kim JH, J. Chem. Thermodyn., 130, 104 (2019)
- Hamza W, Dammak N, Hadjltaief HB, Eloussaief M, Benzina M, Ecotoxicol. Environ. Safe., 163, 365 (2019)
- Al-Kadhi NS, Egypt. J. Aquat. Res., 45, 231 (2019)
- Lee JJ, Appl. Chem. Eng., 31(2), 164 (2020)
- de Souza TNV, de Carvalho SML, Vieira MGA, da Silva MGC, Brasil DDB, Appl. Surf. Sci., 448, 662 (2018)
- Xie G, Wang B, Yan H, J. Anhui Agri. Sci., 34, 4695 (2006)
- Belbachir I, Makhoukhi B, J. Taiwan Inst. Chem. Eng., 75, 105 (2017)
- Hasani S, Ardejani FD, Olya ME, Korean J. Chem. Eng., 34(8), 2265 (2017)