화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.5, 524-531, October, 2021
서로 다른 산을 조절인자로 활용하여 제조한 지르코늄 기반 금속유기골격체의 Diisopropyl Methylphosphonate 흡착 특성
The Characteristics of Diisopropyl Methylphosphonate Adsorption on Zirconium-based Metal Organic Frameworks Manufactured by using Different Acids as Modulators
E-mail:
초록
UiO-66은 높은 흡착능력과 구조적 및 열적 안정성 등으로 여러 현장에 적용 가능한 금속유기골격체(MOF)이다. UiO-66은 제조과정에서 조절인자로 사용되는 산의 종류와 양에 따라 구조적 특성이 변형되고, 화학작용제 흡착 능력을 높일 수 있다고 알려져 있다. 이에 본 연구에서는 다양한 산을 조절인자로 첨가하여 UiO-66을 합성하고, 그 특성을 FT-IR, XRD, 적정장치, 그리고 유사화학작용제 diisopropyl methylphosphonate (DIMP)를 활용한 흡착실험을 통해 분석하였다. 연구 결과 UiO-66의 제조과정에서 염산을 첨가할 시 UiO-66의 Zr-OH 결합과 UiO-66의 유기연결체인 테레프탈산 구조에 일부 손상이 있었다. 특히 이러한 구조 손상은 염산의 농도가 일정 수준 이상으로 높을 때, 그리고 합성시간이 일정 시간 이상으로 길어질 때 발생하였다. 하지만 아세트산과 포름산을 조절인자로 활용하여 제조한 UiO-66은 구조적 손상이 발견되지 않았으며, 염산을 활용하여 제조한 UiO-66에 비하여 결정도, 비표면적, 공극의 부피, 그리고 DIMP 흡착 능력이 모두 높게 나타나 향후 화학작용제 흡착제로서 활용 가능성이 높을 것으로 판단되었다.
Depending on the type and amount of acid used as a modulator in the manufacturing process, the structural properties of UiO-66 can be modified and the adsorbability of chemical warfare agents can be enhanced. In this study, several acids as a modulator were used to synthesize UiO-66. Their properties were analyzed with FT-IR, XRD, titrator, and adsorption isotherms using chemical warfare agent simulant, DIMP. The UiO-66, structurally damaged by hydrochloric acid as a modulator, showed lower crystallinity and DIMP adsorption capacity and also smaller specific surface area and volume of voids compared to those of UiO-66, which was manufactured using acetic acid, and formic acid as a modulator. Additionally, UiO-66 which was synthesized by adding formic acid and hydrochloric acid as a modulator, showed the highest DIMP adsorption capacity and is likely to be used as an adsorbent for chemical warfare agent in the future.
  1. DeCoste JB, Peterson GW, Chem. Rev., 114(11), 5695 (2014)
  2. Gupta RC, Handbook of Toxicology of Chemical Warfare Agents, 2nd ed., Elsevier, Amsterdam, Netherlands (2015).
  3. Ruffley JP, Goodenough I, Luo TY, Richard M, Borguet E, Rosi NL, Johnson JK, J. Phys. Chem. C, 123, 19748 (2019)
  4. Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P, Chem. Eur. J., 17, 6643 (2011)
  5. Lu G, Cui C, Zhang W, Liu Y, Huo F, Chem. Asian J., 8, 69 (2013)
  6. Hasan Z, Jhung SH, J. Hazard. Mater., 283, 329 (2015)
  7. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP, J. Am. Chem. Soc., 130(42), 13850 (2008)
  8. Howarth AJ, Liu Y, Li P, Li Z, Wang TC, Hupp JT, Farha OK, Nat. Rev. Mater., 1, 15018 (2016)
  9. Liu TF, Vermeulen NA, Howarth AJ, Li P, Sarjeant AA, Hupp JT, Farha OK, Eur. J. Inorg. Chem., 2016, 4349 (2016)
  10. Katz M, Brown ZJ, Colon YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK, Chem. Commun., 49, 9449 (2013)
  11. Qiu JH, Feng Y, Zhang XF, Jia MM, Yao JF, J. Colloid Interface Sci., 499, 151 (2017)
  12. Hu G, Xiong W, Luo H, Shi H, Li Z, Shen J, Fang X, Xu B, Zhang J, Appl. Spectrosc., 72, 151 (2018)
  13. Ogawa H, Chihara T, Teratani S, Taya K, Bull. Tokyo Gakugei Univ. Sect IV, 40, 51 (1988)
  14. Mott A, Peter R, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 91, 256 (2012)
  15. Ryu SR, Noda I, Jung YM, Appl. Spectrosc., 64, 1017 (2010)
  16. Wade LG, Organic chemistry, 8th ed., Pearson, London, UK (2012).
  17. Klet RC, Liu Y, Wang TC, Hupp JT, Farha OK, J. Mater. Chem. A, 4, 1479 (2016)
  18. Lau CH, Babarao R, Hill MR, Chem. Commun., 49, 3634 (2013)
  19. Kim SI, Yoon TU, Kim MB, Lee SJ, Hwang YK, Chang JS, Kim HJ, Lee HN, Lee UH, Bae YS, Chem. Eng. J., 286, 467 (2016)
  20. Piscopo CG, Trapani F, Polyzoidis A, Schwarzer M, Pace A, Loebbecke S, New J. Chem., 40, 8220 (2016)
  21. Cheng X, Jiang X, Zhang Y, Hau CH, Xie Z, Ng D, Smith SJ, Hill M, Shao L, ACS Appl. Mater. Interfaces, 9, 38877 (2017)
  22. Lin S, Bediako JK, Cho CW, Song MH, Zhao YF, Kim JA, Choi JW, Yun YS, Chem. Eng. J., 345, 337 (2018)