화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.103, 80-101, November, 2021
Current developments in esterification reaction: A review on process and parameters
E-mail:
Esters are among the highest volume of industrial organic compounds produced. They are frequently employed in various domestic and industrial processes. Fischer esterification regarded as the most common and widely practiced process of ester synthesis, faces serious limitations of low conversion and high reaction time attributed largely to establishment of equilibrium. Ester hydrolysis, reverse reaction to esterification, starts by supply of a byproduct- water. Several approaches have been developed to avoid equilibrium establishment and to improve overall conversion and rate of reaction, a significant difference exists between the current industrial practices and optimum esterification process/conditions. In the current review, a critical analysis of esterification techniques is conducted. Catalytic, non-catalytic thermal esterification, enzymatic esterification, along with factors affecting their productivity are discussed in detail. The current barriers, future challenges and potential of the esterification technologies are analyzed. Based on the comprehensive-data analysis, a novel technology-based solution is proposed.
  1. Larock RC, Rozhkov R, A Guide to Functional Group Preparations, p.1 2018.
  2. Moser BR, Biodiesel production, properties, and feedstocks, in: Biofuels, Springer, PP.285 2011.
  3. Ambat I, Srivastava V, Sillanpaa M, Renew. Sust. Energ. Rev., 90, 356 (2018)
  4. Petibon R, Aiken CP, Ma L, Xiong D, Dahn JR, Electrochim. Acta, 154, 287 (2015)
  5. Kendall JL, Kendall DW, High-solids alcoholic solutions of rosin esters for varnish applications. 2009, Google Patents.
  6. de Oliveira ADN, et al., React. Kinet. Mech. Catal., 2020. 130: 633-653.
  7. Pereira CS, Silva VM, Rodrigues AE, Green Chem., 13(10), 2658 (2011)
  8. Tang X, Chen EYX, Chem, 5(2), 284 (2019)
  9. Mohsin S, et al., Palm Oil Dev, 66, 32 (2017)
  10. Zhang W, et al., Int. J. Biol. Macromol. (2020).
  11. Zare M, Golmakani MT, Sardarian A, Green Chem. Lett. Rev., 13(2), 83 (2020)
  12. De Barros DP, et al., J. Food Biochem., 36(3), 275 (2012)
  13. SA AGA, et al. Trends Food Sci. Technol., 2017.
  14. Steele JH, Bozor MX, Boyce GR, J. Chem. Educ., 97(11), 4127 (2020)
  15. Khan NR, Rathod VK, Process Biochem., 50(11), 1793 (2015)
  16. Iwasaki T, et al., Kirk-Othmer Encycl. Chem. Technol., 1 (2000).
  17. Puterbaugh W, et al., J. Chem. Educ., 40(7), 349 (1963)
  18. Bakar SA, et al., Advanced Materials Research, Trans Tech Publ., 2014.
  19. Ahmad N, Javed F, Awan JA, Ali S, Fazal T, Hafeez A, Aslam R, Rashid N, Rehman MSU, Zimmerman WB, Rehman F, Fuel, 253, 25 (2019)
  20. Ganesh B, et al., Int. J. Ind. Chem., 5(3-4), 85 (2014)
  21. Pattanaik BN, Mandalia HC, IJCRR, 3, 23 (2011)
  22. Wuts PG, Greene TW, Greene’s Protective Groups in Organic Synthesis. 2006: John Wiley & Sons.
  23. Bano K, et al., ChemistrySelect, 5(15), 4470 (2020)
  24. Thangaraj B, et al., Clean Energy, 3(1), 2 (2019)
  25. Sirsam R, Hansora D, Usmani GA, J. Inst. Eng. (India): Series E, 97(2), 167 (2016)
  26. Krishna SH, Karanth N, Catal. Rev., 44(4), 499 (2002)
  27. Nasir N, et al., Renew. Sust. Energ. Rev., 22, 631 (2013)
  28. Jyoti G, Keshav A, J. Anandkumar, J. Eng., 2015 (2015)
  29. Wong KY, et al., Renew. Sust. Energ. Rev., 116 (2019)
  30. Li CL, Duan C, Fang J, Li HS, Chin. J. Chem. Eng., 27(6), 1307 (2019)
  31. Tang YT, Chen YW, Huang HP, Yu CC, Hung SB, Lee MJ, AIChE J., 51(6), 1683 (2005)
  32. Zimmerman WB, Kokoo R, Appl. Energy, 221, 28 (2018)
  33. Rathnam VM, Madras G, Bioresour. Technol., 288 (2019)
  34. Rezaei K, Temelli F, Jenab E, Biotechnol. Adv., 25 (3), 272 (2007).
  35. Rodrigues RC, Fernandez-Lafuente R, J. Mol. Catal. B-Enzym., 64(1-2), 1 (2010)
  36. Tan KT, Lee KT, Renew. Sust. Energ. Rev., 15(5), 2452 (2011)
  37. Narayan RC, Madras G, Energy Fuels, 30(5), 4104 (2016)
  38. Bharathiraja B, Jayamuthunagai J, Kumar RP, BIOFUELS: A Promising Alternate for Next Generation Fuels. 2019: MJP Publisher.
  39. Trentini CP, et al., J. Supercrit. Fluids, 163 (2020)
  40. Busto M, Torresi P, Manuale DL, Yori JC, Vera C, Energy Fuels, 34(3), 3952 (2020)
  41. Buchori L, Istadi I, Purwanto P, Bull. Chem. React. Eng. Catal., 11(3), 406 (2016)
  42. Nguyen HC, et al., Energies, 13(9), 2167 (2020)
  43. Kothe V, et al., Fuel, 260 (2020)
  44. Narayan RC, Madras G, Ind. Eng. Chem. Res., 56(10), 2641 (2017)
  45. Minami E, Saka S, Fuel, 85(17-18), 2479 (2006)
  46. Saka S, Isayama Y, Ilham Z, Xin JY, Fuel, 89(7), 1442 (2010)
  47. dos Santos PRS, Voll FAP, Ramos LP, Corazza ML, J. Supercrit. Fluids, 126, 25 (2017)
  48. Sert E, Atalay FS, Celal Bayar Universitesi Fen Bilimleri Dergisi, 13 (4), 907 (2017).
  49. Russo V, et al., Chem. Eng. J., 408 (2021)
  50. Mandake M, Anekar S, Walke S, Am. Int. J. Res. Sci. Technol. Eng. Math., 3(1), 114 (2013)
  51. de Paiva EJM, Graeser V, Wypych F, Corazza ML, Fuel, 117, 125 (2014)
  52. Santaella MA, Orjuela A, Narvaez PC, Chem. Eng. Process. Process Intensif., 96, 1 (2015)
  53. Shi H, et al., Catal. Commun., 11(7), 588 (2010)
  54. Jyoti G, Keshav A, Anandkumar J, Int. J. Chem. Reactor Eng., 14(2), 571 (2016)
  55. Fauzi AHM, Amin NAS, Renew. Sust. Energ. Rev., 16(8), 5770 (2012)
  56. Jyoti G, et al., Int. J. Chem. Kinet., 50(5), 370 (2018)
  57. Bagheri S, Julkapli NM, Yehye WA, Renew. Sust. Energ. Rev., 41, 113 (2015)
  58. Otera J, Nishikido J, Esterification: Methods, Reactions, and Applications. 2009: John Wiley & Sons.
  59. Li NG, et al., Molecules, 14(6), 2118 (2009)
  60. Nagahata R, et al., Nat. Sci, 9(4), 110 (2017)
  61. Yan Y, et al., Chem. Eng. Process.-Process Intensif., 149 (2020)
  62. Ziarani GM, et al., Res. Chem. Intermed., 39(7), 3157 (2013)
  63. Gupta P, Paul S, Catal. Today, 236, 153 (2014)
  64. Al-Arafi N, Salimon J, J. Chem., 9(1), 99 (2012)
  65. Dastjerdi Z, Dube MA, Environ. Prog. Sustainable Energy, 32, 406 (2013)
  66. Gang L, Xinzong L, Eli W, New J. Chem., 31(3), 348 (2007)
  67. Loures CCA, Amaral MS, Da Ros PCM, Zorn SMFE, de Castro HF, Silva MB, Fuel, 211, 261 (2018)
  68. Lawer-Yolar G, Dawson-Andoh B, Atta-Obeng E, Sustain. Chem., 2(1), 206 (2021)
  69. Bohorquez WF, Osorio-Pascuas OM, Santaella MA, Orjuela A, Ind. Eng. Chem. Res., 59(43), 19203 (2020)
  70. Kolet M, et al., Isr. J. Chem., 60(5-6), 644 (2020)
  71. Gui J, et al., Catal. Commun., 5(9), 473 (2004)
  72. Ulfah M, Sundari E, Praputri E, Materials Science and Engineering, IOP Publishing, 2020.
  73. Mendaros CM, Go AW, Nietes WJT, Gollem BEJO, Cabatingan LK, Renew. Energy, 152, 320 (2020)
  74. Fawaz EG, Salam DA, Daou TJ, Microporous Mesoporous Mater., 294 (2020)
  75. Nugraheni IK, et al., Jurnal Rekayasa Kimia & Lingkungan, 16 (2), 19 (2021).
  76. Sert E, Atalay FS, Ind. Eng. Chem. Res., 51(19), 6666 (2012)
  77. Henz MM, et al., J. Braz. Chem. Soc., 32, 503 (2021)
  78. Buluklu AD, et al., Int. J. Chem. Kinet., 46(4), 197 (2014)
  79. Osazuwa OU, Abidin SZ, ChemistrySelect, 5(25), 7658 (2020)
  80. Murugan E, Arunachalam P, Jebaranjitham JN, Indian J. Chem. Sect. A (IJCA), 59(9), 1327 (2020)
  81. di Bitonto L, Menegatti S, Pastore C, J. Clean Prod., 239 (2019)
  82. Yu H, et al., J. Clean Prod., 183, 67 (2018)
  83. Rana A, et al., Bioenergy Res., 12(2), 433 (2019)
  84. da Luz Correa, AP et al., RSC Adv., 10(34), 20245 (2020)
  85. Ibrahim SF, et al., Energy Conv. Manag., 210 (2020)
  86. Alvear-Daza JJ. et al., Catal. Today (2020).
  87. Lim S, Pang YL, Shuit SH, Wong KH, Leong CK, Int. J. Energy Res., 44(12), 9454 (2020)
  88. Jenie SA, et al., J. Environ. Chem. Eng., 8(4) (2020)
  89. Junior WAP, et al., Energy, 213 (2020)
  90. Mya OB, et al., MethodsX, 5, 277 (2018)
  91. Ulfah M, Octavia S, Suherman H, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019.
  92. Adam F, et al., Chem. Pap., 66(11), 1048 (2012)
  93. Mardhiah HH, et al., Renew. Sust. Energ. Rev., 67, 1225 (2017)
  94. Marchetti JM, Errazu AF, Fuel, 87(15-16), 3477 (2008)
  95. Zhang H, et al., Renew. Sust. Energ. Rev., 114 (2019)
  96. Borugadda VB, Goud VV, Renew. Sust. Energ. Rev., 16(7), 4763 (2012)
  97. Yuan B, et al., Appl. Catal. A: Gen., 622 (2021)
  98. Wu LP, Hu X, Wang S, Hasan MDM, Jiang SJ, Li TT, Li CZ, Fuel, 212, 412 (2018)
  99. Liu YJ, Lotero E, Goodwin JG, J. Catal., 243(2), 221 (2006)
  100. Rajabi F, Abdollahi M, Luque R, Materials, 9(7), 557 (2016)
  101. Juan JC, Zhang JC, Yarmo MA, Catal. Lett., 126(3-4), 319 (2008)
  102. Vieira SS, Magriotis ZM, Santos NAV, Saczk AA, Hori CE, Arroyo PA, Bioresour. Technol., 133, 248 (2013)
  103. Yu H, et al., Renewable Energy (2021).
  104. Park YM, et al., Bioresour. Technol., 101(1), S59 (2010)
  105. Marzouk NM, et al., J. Environ. Chem. Eng., 9(2) (2021)
  106. Wang M, Wang ZC, Sun ZL, Jiang H, React. Kinet. Catal. Lett., 84(2), 223 (2005)
  107. Zang Y, et al., Catal. Sci. Technol., 3(8), 2044 (2013)
  108. Ilgen O, Fuel Process. Technol., 124, 134 (2014)
  109. Naik BD, Udayakumar M, Mater. Today:. Proc. (2021).
  110. Cao M, et al., Bioresour. Technol., 324 (2021)
  111. Pourzolfaghar H, et al., Renew. Sust. Energ. Rev., 61, 245 (2016)
  112. Stergiou PY, et al., Biotechnol. Adv., 31(8), 1846 (2013)
  113. Gamayurova V, et al., Catal. Ind., 13(1), 58 (2021)
  114. Wancura JH, et al., Canadian J. Chem. Eng., 97, 1332 (2019)
  115. Wancura JH, et al., Canadian J. Chem. Eng., 96(11), 2361 (2018)
  116. Rosset DV, Wancura JHC, Ugalde GA, Oliveira JV, Tres MV, Kuhn RC, Jahn SL, Appl. Biochem. Biotechnol., 188(4), 914 (2019)
  117. Wancura JH, et al., J. Clean Prod., 285 (2021)
  118. Hasan F, Shah AA, Hameed A, Biotechnol. Adv., 27(6), 782 (2009)
  119. Torres S, Castro GR, Food Technol. Biotechnol., 42(4), 271 (2004)
  120. Dosanjh NS, Kaur J, Biotechnol. Appl. Biochem., 36(1), 7 (2002)
  121. Zhao X, et al., Renew. Sust. Energ. Rev., 44, 182 (2015)
  122. Homaei AA, et al., J. Chem. Biol., 6(4), 1815 (2013)
  123. Xu Y, Woodley J, Nordblad Process Technology for Immobilized Lipasecatalyzed Reactions. 2012.
  124. Wancura C, JH, et al., Biotechnol. Appl. Biochem., 2020.
  125. Lv LL, Dai LM, Du W, Liu DH, Process Biochem., 58, 239 (2017)
  126. Wancura JHC, Rosset DV, Mazutti MA, Ugalde GA, de Oliveira JV, Tres MV, Jahn SL, Appl. Microbiol. Biotechnol., 103(18), 7805 (2019)
  127. Wancura JH, et al., Bioprocess Biosyst. Eng., 41(8), 1185 (2018)
  128. Serrano DC, Corazza ML, Mitchell DA, Krieger N, Biotechnol. Lett., 43(2), 503 (2021)
  129. Guldhe A, et al., Renew. Sust. Energ. Rev., 41, 1447 (2015)
  130. Abdul Rahman MB, Chaibakhsh N, Basri M, Biotechnol. Res. Int. (2011).
  131. Staudt A, et al., Nat. Prod. Res., 1 (2020).
  132. Chang M, et al., LWT, 128 (2020)
  133. Rosset IG, et al., Catal. Lett., 143(9), 863 (2013)
  134. Shin M, et al., Biomolecules, 10(1), 70 (2020)
  135. Lozano P, Bernal JM, Navarro A, Green Chem., 14(11), 3026 (2012)
  136. Seo JB, Shin MG, Lee JH, Lee T, Oh JM, Park CH, J. Ind. Eng. Chem., 93, 430 (2021)
  137. Vanin AB, Orlando T, Piazza SP, Puton BMS, Cansian RL, Oliveira D, Paroul N, Appl. Biochem. Biotechnol., 174(4), 1286 (2014)
  138. Lopresto CG, et al., J. Mol. Catal. B-Enzym., 110, 64 (2014)
  139. Paroul N, et al., Bioprocess Biosyst. Eng., 34(3), 323 (2011)
  140. Meher LC, Sagar DV, Naik S, Renew. Sust. Energ. Rev., 10(3), 248 (2006)
  141. Demirbas A, Energy Conv. Manag., 47(15-16), 2271 (2006)
  142. Salvi B, Panwar N, Renew. Sust. Energ. Rev., 16(6), 3680 (2012)
  143. Musa IA, Egypt. J. Pet., 25(1), 21 (2016)
  144. Helwani Z, Othman MR, Aziz N, Kim J, Fernando WJN, Appl. Catal. A: Gen., 363(1-2), 1 (2009)
  145. Zeng Z, et al., Chem Kinet, 255 (2012).
  146. Tariq M, Ali S, Khalid N, Renew. Sust. Energ. Rev., 16(8), 6303 (2012)
  147. Kayode B, Hart A, Biofuels, 10(3), 419 (2019)
  148. Vicente G, Martinez M, Aracil J, Bioresour. Technol., 92(3), 297 (2004)
  149. Borges ME, Diaz L, Renew. Sust. Energ. Rev., 16(5), 2839 (2012)
  150. Go AW, et al., Renew. Sust. Energ. Rev., 60, 284 (2016)
  151. Thangarasu V, Anand R, Advanced Biofuels, Elsevier, pp.443 2019.
  152. Issariyakul T, Dalai AK, Renew. Sust. Energ. Rev., 31, 446 (2014)
  153. Atadashi I, et al., Renew. Sust. Energ. Rev., 16(5), 3275 (2012)
  154. Sawangkeaw R, Ngamprasertsith S, Renew. Sust. Energ. Rev., 25, 97 (2013)
  155. Grebemariam S, Marchetti JM, Biodiesel Prod. Technol. (2017).
  156. Ji J. et al., Ultrasonics, 44, e411 (2006)
  157. Kim M, Yan S, Salley SO, Ng KYS, Bioresour. Technol., 101(12), 4409 (2010)
  158. Vicente G, Martinez M, J. Aracil, Bioresour. Technol., 98(9), 1724 (2007)
  159. KoohiKamali S, Tan CP, Ling TC, Sci. World J., 2012 (2012)
  160. Onukwuli DO, et al., Egypt. J. Pet., 26(1), 103 (2017)
  161. Ahmad M, et al., Asian J. Chem., 20(6), 4565 (2008)
  162. Berchmans HJ, Hirata S, Bioresour. Technol., 99(6), 1716 (2008)
  163. Tapanes NCO, Aranda DAG, Carneiro JWD, Antunes OAC, Fuel, 87(10-11), 2286 (2008)
  164. Shuit SH, Lee KT, Kamaruddin AH, Yusup S, Fuel, 89(2), 527 (2010)
  165. Thangaraj B, Ramachandran KB, Raj SP, Int. J. Renewable Energy Biofuels, 11, 1 (2014)
  166. Abba E, et al., Am. J. Energy Sci., 4(2), 5 (2017)
  167. Khayoon MS, Olutoye MA, Harneed BH, Bioresour. Technol., 111, 175 (2012)
  168. Karmee SK, Chadha A, Bioresour. Technol., 96(13), 1425 (2005)
  169. Sharma YC, Singh B, Fuel, 87(8-9), 1740 (2008)
  170. Jitputti J, Kitiyanan B, Rangsunvigit P, Bunyakiat K, Attanatho L, Jenvanitpanjakul P, Chem. Eng. J., 116(1), 61 (2006)
  171. Yan S, Lu H, Liang B, Energy Fuels, 22(1), 646 (2007)
  172. Kansedo J, Lee KT, Bhatia S, Biomass Bioenerg., 33(2), 271 (2009)
  173. Roschat W, Siritanon T, Yoosuk B, Promarak V, Energy Conv. Manag., 119, 453 (2016)
  174. Torres-Rodriguez DA, Romero-Ibarra IC, Ibarra IA, Pfeiffer H, Renew. Energy, 93, 323 (2016)
  175. Santos S, et al., Energies, 12(24), 4670 (2019)
  176. Negm NA, et al., J. Mol. Liq., 234, 157 (2017)
  177. Nisar J, Razaq R, Farooq M, Iqbal M, Khan RA, Sayed M, Shah A, Rahman IU, Renew. Energy, 101, 111 (2017)
  178. Sudsakorn K, et al., J. Environ. Chem. Eng., 5(3), 2845 (2017)
  179. Baskar G, Soumiya S, Renew. Energy, 98, 101 (2016)
  180. Ismail S, et al., Journal of Renewable Energy 2016 (2016).
  181. Bender ML, Chem. Rev., 60(1), 53 (1960)
  182. Perez-Casas S, et al., J. Chem. Soc.-Faraday Trans., 87(11), 1745 (1991)
  183. Patai S, Chemistry of Carboxylic Acids and Esters. 1969.
  184. Hartman R, Storms L, Gassmann A, J. Am. Chem. Soc., 61(8), 2167 (1939)
  185. Gassmann A, Hartman R, J. Am. Chem. Soc., 63(9), 2393 (1941)
  186. Al-Jendeel HA, Al-Hassani MH, Zeki NSA, Al-Khwarizmi Eng. J., 6(2), 33 (2010)
  187. Salciccioli M, Stamatakis M, Caratzoulas S, Vlachos DG, Chem. Eng. Sci., 66(19), 4319 (2011)
  188. Kirbaslar SI, Terzioglu HZ, Dramur U, Chin. J. Chem. Eng., 9(1), 90 (2001)
  189. Kreul L, et al., Comput. Chem. Eng., 22, S371 (1998)
  190. Liu YJ, Lotero E, Goodwin JG, J. Catal., 242(2), 278 (2006)
  191. Rolfe A, Hinshelwood C, Trans. Faraday Soc., 30, 935 (1934)
  192. Ronnback R, Salmi T, Vuori A, Haario H, Lehtonen J, Sundqvist A, Tirronen E, Chem. Eng. Sci., 52(19), 3369 (1997)
  193. Smith HA, J. Am. Chem. Soc., 61(2), 254 (1939)
  194. Agreda V, Chem. Eng. Progr., 86, 40 (1990)
  195. Cardoso AL, Augusti R, Da Silva MJ, J. Am. Oil. Chem. Soc., 85(6), 555 (2008)
  196. Ganesh B, et al., Int. J. Chem. Kinet., 43, 263 (2011)
  197. Mekala M, Goli VR, Chin. J. Chem. Eng., 23(1), 100 (2015)
  198. Shen VK, et al., National Institute of Standards and Technology, Gaithersburg MD, 20899.
  199. Sharma A, Dalai AK, Chaurasia SP, Eur. Int. J. Sci. Technol, 4(2), 128 (2015)
  200. Zainol MM, Amin NAS, Asmadi M, Renew. Energy, 130, 547 (2019)
  201. Bankole KS, Uncatalyzed Esterification of Biomass-Derived Carboxylic Acids. 2011.
  202. Parausanu V, et al., Rev. Chim., 31(1), 30 (1980)
  203. Yamada T, Imamura Y, Polym.-Plast. Technol. Eng., 28(7-8), 811 (1989)
  204. Othmer DF, Marshak S, Schlecter N, Ind. Eng. Chem., 37(9), 900 (1945)
  205. Berthelot M, de Saint-Gilles P, Ann. Chim. Phys., 65(3), 385 (1862)
  206. Kauffman GB, Am. Sci., 84(2), 192 (1996)
  207. Alenezi R, Leeke GA, Winterbottom JM, Santos RCD, Khan AR, Energy Conv. Manag., 51(5), 1055 (2010)
  208. Pandian S, et al., Refining Biomass Residues for Sustainable Energy and Bioproducts, Elsevier, pp. 87 2020.
  209. Gan SY, Ng HK, Chan PH, Leong FL, Fuel Process. Technol., 102, 67 (2012)
  210. Diaz-Felix W, Riley MR, Zimmt W, Kazz M, Biomass Bioenerg., 33(4), 558 (2009)
  211. Lilja J, Aumo J, Salmi T, Murzin DY, Maki-Arvela P, Sundell M, Ekman K, Peltonen R, Vainio H, Appl. Catal. A: Gen., 228(1-2), 253 (2002)
  212. Peng-Lim B, Ganesan S, Maniam GP, Khairuddean M, Efendi J, Energy Conv. Manag., 65, 392 (2013)
  213. Zheng Y, et al., Green Chem. Lett. Rev., 10(4), 202 (2017)
  214. Jiang Y, et al., Energy Conv. Manag., 76, 98 (2013)
  215. Babali B, Tuter M, Ustun G, J. Am. Oil. Chem. Soc., 78(2), 173 (2001)
  216. Kawabata T, et al., Tetrahedron Lett., 44, 9205 (2003)
  217. Loupy A, Varma RS, Chemistry Today, 24(3), 36 (2006)
  218. Motasemi F, Ani F, Renew. Sust. Energ. Rev., 16(7), 4719 (2012)
  219. Huang YB, et al.,, RSC Adv., 6(3), 2106 (2016)
  220. Jaiswal KS, Rathod VK, J. Indian Chem. Soc., 98(2) (2021)
  221. Kusuma HS, Ansori A, Mahfud M, J. Chem. Technol. Metall., 56(4) (2021)
  222. Kiss NZ, Henyecz R, Keglevich G, Molecules, 25(3), 719 (2020)
  223. Tajti A, et al., Journal of Flow Chemistry, 8 (1), 11 (2018).
  224. Binnal P, et al., Indian Chem. Eng., 1 (2020).
  225. Marwan M, et al., Bull. Chem. React. Eng. Catal., 14(3), 672 (2019)
  226. Saimon NN, et al., Chem. Eng. Trans., 72, 367 (2019)
  227. Bansode SR, Rathod VK, Chem. Eng. Process., 129, 71 (2018)
  228. Toukoniitty B, Mikkola JP, Eranen K, Salmi T, Murzin DY, Catal. Today, 100(3-4), 431 (2005)
  229. Abas NA, et al., Chem. Eng. J., 382 (2020)
  230. Mohan KK, Narender N, Kulkarni S, Green Chem., 8(4), 368 (2006)
  231. Ning YL, Niu SL, Energy Conv. Manag., 153, 446 (2017)
  232. Quitain AT, Sumigawa Y, Mission EG, Sasaki M, Assabumrungrat S, Kida T, Energy Fuels, 32(3), 3599 (2018)
  233. Nguyen HC, Ong HC, Pham TTT, Dinh TKK, Su CH, Int. J. Energy Res., 44(3), 1698 (2020)
  234. Keramat M, Golmakani MT, LWT, 127 (2020)
  235. Nguyen HC, Huang KC, Su CH, Chem. Eng. J., 382 (2020)
  236. Priecel P, Lopez-Sanchez JA, ACS Sustainable Chem. Eng., 7(1), 3 (2018)
  237. Li H, et al., Renew. Sust. Energ. Rev., 114 (2019)
  238. De La Hoz A, et al., Reproducibility and scalability of microwave-assisted reactions, in Microwave Heating. 2011, IntechOpen.
  239. Moseley JD, Kappe CO, Green Chem., 13(4), 794 (2011)
  240. Razzaq T, Kappe CO, ChemSusChem, 1(1-2), 123 (2008)
  241. Fabian L, et al., Synth. Commun., 44(16), 2386 (2014)
  242. Boluk S, Sonmez O, Chem. Eng. Technol., 43(9), 1792 (2020)
  243. MulayRathod AK, Chem. Data Collect. (2021).
  244. Pratap S, Shamshuddin SM, Shyamprasad K, Chem. Data Collect., 30 (2020)
  245. Pathak G, Das D, Rokhum L, RSC Adv., 6(96), 93729 (2016)
  246. Kim D, Choi J, Kim GJ, Seol SK, Ha YC, Vijayan M, Jung S, Kim BH, Lee GD, Park SS, Bioresour. Technol., 102(3), 3639 (2011)
  247. Keglevich G, et al., Org. Biomol. Chem., 10(10), 2011 (2012)
  248. Tumkot L, et al., ACS Omega, 5(37), 23542 (2020)
  249. Veljkovic VB, Avramovic JM, Stamenkovic OS, Renew. Sust. Energ. Rev., 16(2), 1193 (2012)
  250. Jaita S, Phakhodee W, Pattarawarapan M, Synlett, 26(14), 2006 (2015)
  251. Azadi P, et al., Renew. Sust. Energ. Rev., 76, 1479 (2017)
  252. Singh V, et al., Resonance, 3(9), 56 (1998)
  253. Masri AN, et al., Ultrason. Sonochem., 60 (2020)
  254. Abd Malek MNF, et al., Biomass Convers. Biorefin., 1 (2020).
  255. Vartolomei A, et al., UPB Sci. Bull., Series B, 83(1), 114 (2021)
  256. Wen B, et al., Ultrason. Sonochem., 14(2), 213 (2007)
  257. Mirza-Aghayan M, et al., Ultrason. Sonochem., 22, 359 (2015)
  258. Cebrian-Garcia S, Balu AM, Luque R, Front. Chem., 6 (2018)
  259. Khan NR, Jadhav SV, Rathod VK, Ultrason. Sonochem., 27, 522 (2015)
  260. Xiao YM, et al., Carbohydr. Res., 340(13), 2097 (2005)
  261. Khan NR, Gawas SD, Rathod VK, Bioprocess Biosyst. Eng., 41(11), 1621 (2018)
  262. Majid I, Nayik GA, Nanda V, Cogent Food Agric., 1(1), 107102 (2015)
  263. Ashokkumar M, Disadvantages and Challenges of Ultrasonic Technology Ultrasonic Synthesis of Functional Materials, p.41 2016.
  264. Lim SY, Park B, Hung F, Sahimi M, Tsotsis TT, Chem. Eng. Sci., 57(22-23), 4933 (2002)
  265. Figueiredo KCD, Salim VMM, Borges CP, Catal. Today, 133, 809 (2008)
  266. Liu K, Feng X, Tong ZF, Li L, Sep. Sci. Technol., 40(10), 2021 (2005)
  267. Chandane VS, Rathod AP, Wasewar KL, Chem. Eng. Technol., 42(5), 1002 (2019)
  268. Nigiz FU, Sep. Purif. Technol., 264 (2021)
  269. Zhang L, Li YW, Liu Q, Li WX, Xing WH, J. Membr. Sci., 584, 268 (2019)
  270. Sun H, et al., Sep. Purif. Technol., 241 (2020)
  271. Aminabhavi T, et al., J. Macromol. Sci.-Polym. Rev, 34(2), 139 (1994)
  272. Figueiredo K, Salim V, Borges C, Braz. J. Chem. Eng., 27(4), 609 (2010)
  273. Sanz MT, Gmehling J, Chem. Eng. J., 123(1-2), 1 (2006)
  274. Shao P, Huang RYM, J. Membr. Sci., 287(2), 162 (2007)
  275. Ling WS, Thian TC, Bhatia S, Sep. Purif. Technol., 71(2), 192 (2010)
  276. Jou JD, Yoshida W, Cohen Y, J. Membr. Sci., 162(1-2), 269 (1999)
  277. Fontalvo J, Vorstman MAG, Wijers JG, Keurentjes JTF, Ind. Eng. Chem. Res., 45(6), 2002 (2006)
  278. Javed F, Microbubble Mediated Mass Transfer for the Production of Ethyl Acetate, COMSATS University Islamabad, Lahore Campus, 2018.
  279. Zimmerman WB, et al., Recent Patents on Eng. 2 (1), 1 (2008).
  280. Javed F, et al., React. Chem. Eng., 4(4), 705 (2019)
  281. Chu LB, et al., Chemosphere, 68(10), 1854 (2007)
  282. Shangguan Y, et al., Earth and Environmental Science, 2018.
  283. Rehman F, et al., Environ. Res., 137, 32 (2015)
  284. Liu C, Tanaka H, Zhang J, Zhang L, Yang JL, Huang X, Kubota N, Sep. Purif. Technol., 103, 53 (2013)
  285. Khirani S, Kunwapanitchakul P, Augier F, Guigui C, Guiraud P, Hebrard G, Ind. Eng. Chem. Res., 51(4), 1997 (2012)
  286. Burns SE, Yiacoumi S, Tsouris C, Sep. Purif. Technol., 11(3), 221 (1997)
  287. Li P, Tsuge H, J. Chem. Eng. Jpn., 39(8), 896 (2006)
  288. Zlokarnik M, Water Res., 32(4), 1095 (1998)
  289. Rodrigues RT, Rubio J, Int. J. Miner. Process., 82(1), 1 (2007)
  290. Kukizaki M, J. Membr. Sci., 327(1-2), 234 (2009)
  291. Kukizaki M, Goto M, J. Membr. Sci., 281(1-2), 386 (2006)
  292. Kukizaki M, Goto M, Colloids Surf. A: Physicochem. Eng. Asp., 296(1-3), 174 (2007)
  293. Kukizaki M, Wada T, Colloids Surf. A: Physicochem. Eng. Asp., 317(1-3), 146 (2008)
  294. Zimmerman WB, Tesar V, Bandulasena HH, Curr. Opin. Colloid Interface Sci., 16, 350 (2011)
  295. Jameson GJ, Colloids Surf. A: Physicochem. Eng. Asp., 151(1-2), 269 (1999)
  296. Kukizaki M, Baba Y, Colloids Surf. A: Physicochem. Eng. Asp., 326(3), 129 (2008)
  297. Bhatti HN, Hanif MA, Qasim M, Rehman AU, Fuel, 87(13-14), 2961 (2008)
  298. Amore KM, Leadbeater NE, Macromol. Rapid Commun., 28(4), 473 (2007)
  299. Zhang L, Xian M, He YC, Li LZ, Yang JM, Yu ST, Xu X, Bioresour. Technol., 100(19), 4368 (2009)
  300. Javed F, et al., Journal of Cleaner Production, 311, 127525 (2021).
  301. Rani KNP, et al., Journal of Oleo Science, 65, 441 (2016).
  302. Patil PD, Energy Fuels, 24, 746 (2009)
  303. Khurana JM, et al., Journal for Rapid Communication of Synthetic Organic Chemistry, 2267 (1990).
  304. de Paiva EJM, Graeser V, Wypych F, Corazza ML, Fuel, 117, 125 (2014)
  305. Encinar JM, et al., Bioresource and Technology, 102, 10907 (2011).
  306. Zullaikah S, et al., Bioresource Technology, 96, 1889 (2005).