화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.103, 222-231, November, 2021
Mn0.05Cd0.95S/Cu2SeI p-n heterojunction with high-conductivity for efficient photocatalytic hydrogen evolution
E-mail:
It is undoubtedly that constructing heterojunction on the surface of semiconductor materials is an effective way to improve the performance of photocatalysts. Here, Cu2SeI nanospheres were dispersed on the surface of Mn0.05Cd0.95S nanoparticles constructed a p-n heterojunction photocatalyst with high conductivity. Firstly, SEM and TEM showed that the load of Cu2SeI nanospheres successfully formed a close contact on the surface of MCS, which was conducive to the rapid charge transfer between the two. Under visible light irradiation, Na2S/Na2SO3 (0.35 M/0.25 M) was used as sacrifice reagent for hydrogen production. The results showed that the construction of p-n heterojunction was beneficial to charge transfer and the hydrogen evolution ability of the composite catalyst was greatly improve, the 3%MCS/Cu2SeI showed the best hydrogen production activity reaching 677.4 μmol after 5 h, it is 12.3 times higher than that of single catalyst MCS, In addition, the results of X-ray photoelectron spectroscopy (XPS) show that the binding energies of the elements in the composite catalysts are different compared with those in the catalysts alone, indicating that there is a interaction between the catalysts. Through the analysis of photoelectrochemical and fluorescence spectra, the charge transfer kinetics of the composite catalyst was explained and discussed in depth. On the basis of the above analysis results, the possible photocatalytic reaction mechanism of the composite catalyst was proposed, and the mechanism was analyzed and discussed. This work has undoubtedly made a further improvement for the activity of photocatalytic hydrogen production.
  1. Mana PM, Bhujbal PK, Pathan HM, ES Energy Environ., 12, 77 (2021)
  2. Satpute SD, Jagtap JS, Bhujbal PK, Sonar SM, Baviskar PK, Jadker SR, Pathan HM, ES Energy Environ., 9, 89 (2020)
  3. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Wei D, Eng. Sci., 11, 19 (2020)
  4. Zhang Y, Huang Z, Shi J, Guan X, Cheng C, Zong S, Huangfu Y, Ma L, Guo L, Appl. Catal. B: Environ., 272 (2020)
  5. Cheng C, Zong S, Shi J, Xue F, Zhang Y, Guan X, Zheng B, Deng J, Guo L, Appl. Catal. B: Environ., 265 (2020)
  6. Yan T, Liu H, Jin ZL, Energy Fuels, 35(1), 856 (2021)
  7. Shi J, Chen F, Hou L, Li G, Li Y, Guan X, Liu H, Guo L, Appl. Catal. B: Environ., 280 (2021)
  8. Niu M, Cao DP, Sui KY, Liu CZ, Int. J. Hydrog. Energy, 45(20), 11615 (2020)
  9. Singh N, Jana S, Singh GP, Dey RK, Adv. Comp. Hybrid Mater., 3, 127 (2020)
  10. Hui D, Li J, Sun R, Ma JJ, Wei ES, Energy Environ., 9, 82 (2020)
  11. Wang YP, Hao XQ, Zhang LJ, Li YB, Jin ZL, Energy Fuels, 34(2), 2599 (2020)
  12. Wang B, Ding Y, Deng Z, Li Z, Chinese J. Catal., 40, 335 (2019)
  13. Shen R, Ding Y, Li S, Zhang P, Xiang Q, Ng YH, Li X, Chinese J. Catal., 42, 25 (2021)
  14. Han Y, Dong X, Liang Z, Catal. Sci. Technol., 9, 1427 (2019)
  15. Huang QZ, Tao ZJ, Ye LQ, Yao HC, Li ZJ, Appl. Catal. B: Environ., 237, 689 (2018)
  16. Huang Q, Wang J, Ye L, Zhang Q, Yao H, Li Z, J. Taiwan Instit. Chem. Eng., 80, 570 (2017)
  17. Lai J, Qin Y, Lan Y, Zhang C, Mater. Sci. Semicond. Process, 52, 82 (2016)
  18. Wang JM, Luo J, Liu D, Chen ST, Peng TY, Appl. Catal. B: Environ., 241, 130 (2019)
  19. Gong H, Wang G, Li H, Jin Z, Guo Q, Int. J. Hydrog. Energy, 45, 26733 (2020)
  20. Wang YP, Hao XQ, Zhang LJ, Li YB, Jin ZL, Energy Fuels, 34(2), 2599 (2020)
  21. Chen R, Ao Y, Wang C, Wang P, Dalton Trans., 48, 14783 (2019)
  22. Liu H, Meng J, Zhang J, Catal. Sci. Technol., 7, 3802 (2017)
  23. Ikeue K, Shinmur Y, Machida M, Appl. Catal. B: Environ., 123-124, 84 (2012)
  24. Feng H, Xi Y, Huang Q, Dalton Trans., 49, 12242 (2020)
  25. Qin Y, Yang L, Wei J, Yang S, Zhang M, Wang X, Yang F, Materials, 13, 5704 (2020)
  26. Wang J, Liu B, Miao N, Zhou J, Sun Z, J. Alloy. Compd., 722, 366 (2019)
  27. Liu M, Chen B, Li R, Li C, Zou H, Huang C, ACS Sustainable Chem. Eng., 5, 4154 (2017)
  28. Xiao G, Ning J, Liu Z, Sui Y, Wang Y, Dong Q, Tian W, Liu B, Zou G, Zou B, CrystEngComm, 14, 2139 (2012)
  29. Shi W, Shi J, Shuai Y, Liu P, Appl. Catal. B: Environ., 138-139, 184 (2013)
  30. Sonia S, Kumar PS, Mangalaraj D, Ponpandian N, Viswanathan C, Appl. Surf. Sci., 283, 802 (2013)
  31. Wang X, Cao Y, Jin Z, Int. J. Energy Res. (2021).
  32. Cao Y, Wang G, Ma Q, Jin Z, Mol. Catal., 492 (2020)
  33. Suwannasri W, Chueachot R, Seetawan T, Nakhowong R, J. Alloy. Compd., 863 (2021)
  34. Zhao L, Kazi SM, Islam N, et al., Nano Energy, 41, 164 (2017)
  35. Dan M, Zhang Q, Yu S, Prakash A, Lin YH, Zhou Y, Appl. Catal. B: Environ., 217, 530 (2017)
  36. Cao Y, Wang G, Liu H, Li Y, Jin Z, Ma Q, Int. J. Hydrog. Energy, 46, 7230 (2021)
  37. Huang QZ, Xiong Y, Zhang Q, Yao HC, Li ZJ, Appl. Catal. B: Environ., 209, 514 (2017)
  38. Cao y, Wang G, Ma Q, Jin Z, Dalton Trans., 49, 12200 (2020)
  39. Zhang Y, Li Y, Jiu B, Gong F, Chen J, Fang S, Zhang H, Nanotechnology, 30 (2019)
  40. Alegria M, Aliaga J, Ballesteros L, Sotomayor-Torres C, Gonzalez G, Benavente E, Top. Catal., 64, 167 (2021)
  41. Chen Z, Shi X, Zhao L, Zou J, Prog. Mater Sci., 97, 283 (2018)
  42. Zhidkov IS, Boukhvalov DW, Akbulatov AF, et al., Nano Energy, 79 (2021)
  43. Hao XQ, Jin ZL, Yang H, Lu GX, Bi YP, Appl. Catal. B: Environ., 210, 45 (2017)
  44. Xie P, Liu Y, Feng M, Niu M, Liu C, Nannan W, Sui K, Patil RR, PAn D, Guo Z, Fan R, Adv. Comp. Hybrid Mater., 4, 173 (2021)
  45. Shi YN, Chen JJ, Mao ZY, Fahlman BD, Wang DJ, J. Catal., 356, 22 (2017)
  46. Li YX, Han P, Hou YL, Peng SQ, Kuang XJ, Appl. Catal. B: Environ., 244, 604 (2019)
  47. Meng X, Zhang C, Dong C, Sun W, Ji D, Ding Y, Chem. Eng. J., 389 (2020)
  48. Pan J, Guan Z, Yang J, Li Q, Chin. J. Catal., 41, 200 (2020)
  49. Jiang X, Gong H, Liu Q, Song M, Huang C, Appl. Catal. B: Environ., 268 (2020)
  50. Li Y, Jin Z, Zhang L, Fan K, Chin. J. Catal., 40, 390 (2019)
  51. Jiang X, Liu Q, Cheng C, Xing F, Chen C, Huang C, Int. J. Hydrog. Energy, 46, 5197 (2021)
  52. Gong H, Li Z, Chen Z, Liu Q, Song M, Huang C, A.C.S. Appl, Nano Mater., 3, 3665 (2020)
  53. Li YX, Yang TY, Li H, Tong RJ, Peng SQ, Han X, J. Colloid Interface Sci., 578, 273 (2020)
  54. Azarang M, Sookhakian M, Aliahmad M, Dorraj M, Basirun WJ, Goh BT, Alias Y, Int. J. Hydrog. Energy, 43(32), 14905 (2018)
  55. Bhowmik T, Kundu MK, Barman S, ACS Catal., 6(1929), 1941 (1929)
  56. Tang Y, Fang X, Zhang X, Fernandes G, Yan Y, Dongpeng X, Xiang YJH, ACS Appl. Mater. Interfaces, 9, 36762 (2017)
  57. Zhang XL, Zhang XX, Li JD, Sun JH, Bian J, Wang JS, Qu Y, Yan R, Qin CL, Jing LQ, Appl. Catal. B: Environ., 237, 50 (2018)
  58. Liu H, Peng S, Jin Z, Guo Q, Dalton Trans., 49, 13393 (2020)
  59. Sun W, Meng X, Chunjiang X, Yang J, Liang X, Dong Y, Dong C, Ding Y, Chin. J. Catal., 41(1826), 1836 (2020)
  60. Yan X, Wang GR, Zhang YP, Guo QJ, Jin ZL, Int. J. Hydrog. Energy, 45(4), 2578 (2020)
  61. Chen LY, Zhou M, Luo ZS, Wakeel M, Asiri AM, Wang XC, Appl. Catal. B: Environ., 241, 246 (2019)
  62. Azarang M, Bakhtiyari A, Rakhshani R, Davarpanah AM, Aliahmad M, Jahantigh MF, Adv. Powder Technol., 32(2), 504 (2021)
  63. Xia P, Cao S, Zhu B, Liu M, Shi M, Jiaguo Y, Zhang Y, Angew. Chem.-Int. Edit., 59, 5218 (2020)