화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.103, 255-263, November, 2021
CO2 separation from biogas using PEI-modified crosslinked polymethacrylate resin sorbent
E-mail:,
The separation of CO2 from biogas to achieve vehicle/pipeline grade methane is an expensive step. Recently, PEI (polyethyleneimine) impregnated resins have been proposed and evaluated for CO2 separation from flue gases and air. However, its use in biogas upgrading and evaluation of the economic feasibility of such adsorbents have not been explored in detail. In this work, by modifying an inert polymeric resin (HP2MGL) using PEI, CO2 was separated from biogas. The sorbent exhibited the highest adsorption capacity of 2.7 mmolCO2/gads at 30% PEI loading, increasing to 2.9 mmolCO2/gads in the presence of moisture, and remained stable for up to five adsorption.desorption cycles. In situ DRIFTS studies showed that CO2 adsorption on PEI-impregnated sorbent is consistent with the zwitterion reaction mechanism, and the sorbent could be regenerated completely at 100 °C. The upgrading cost of biogas is primarily dominated by the operating cost of regeneration and the adsorbent cost. The economic feasibility analysis suggests that PEI-impregnated resin sorbent requires less capital and operating costs than conventional biogas upgrading technologies. Therefore, PEI-impregnated polymeric resins are promising for CO2 separation from biogas.
  1. Mokhatab S, Poe WA, Mak JY, Chapter 4 - Basic Concepts of Natural Gas Processing, Gulf Professional Publishing, pp.177 2019.
  2. Adnan AI, Ong MY, Nomanbhay S, Chew KW, Show PL, Bioengineering, 6, 92 (2019)
  3. Zhao X, Naqi A, Walker DM, Roberge T, Kastelic M, Joseph B, Kuhn JN, Sustain Energ Fuels, 3, 539 (2019)
  4. Yildiz MG, Davran-Candan T, Gunay ME, Yildirim R, J CO2 Util, 31, 27 (2019)
  5. Didas SA, Kulkarni AR, Sholl DS, Jones CW, ChemSusChem, 5, 2058 (2012)
  6. Goeppert A, Zhang H, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR, ChemSusChem, 7, 1386 (2014)
  7. Wang WJ, Motuzas J, Zhao XS, da Costa JCD, Ind. Eng. Chem. Res., 57(16), 5653 (2018)
  8. Psarras P, He JJ, Wilcox J, Ind. Eng. Chem. Res., 56(21), 6317 (2017)
  9. Darunte LA, Walton KS, Sholl DS, Jones CW, Curr. Opin. Cheml. Engin., 12, 82 (2016)
  10. Yoo CJ, Narayanan P, Jones CW, J. Mater. Chem. A, 7, 19513 (2019)
  11. Wang X, Chen LL, Guo QJ, Chem. Eng. J., 260, 573 (2015)
  12. Zhang GJ, Zhao PY, Hao LX, Xu Y, Cheng HZ, Sep. Purif. Technol., 209, 516 (2019)
  13. Yan XL, Zhang L, Zhang Y, Yang GD, Yan ZF, Ind. Eng. Chem. Res., 50(6), 3220 (2011)
  14. Kishor R, Ghoshal AK, Ind. Eng. Chem. Res., 56(20), 6078 (2017)
  15. Sanz-Perez ES, Arencibia A, Calleja G, Sanz R, Microporous Mesoporous Mater., 260, 235 (2018)
  16. Goeppert A, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR, J. Am. Chem. Soc., 133(50), 20164 (2011)
  17. Penchah HR, Gilani HG, Ghaemi A, J. Chem. Engin. Data, 65, 4905 (2020)
  18. Huang J, Turner SR, Pol. Rev., 58, 1 (2018)
  19. Yao S, Yang X, Yu M, Zhang Y, Jiang JX, J. Mater. Chem. A, 2, 8054 (2014)
  20. Salen M, Lee HM, Kemp KC, Kim KS, ACS Appl. Mater. Inter., 6, 7325 (2014)
  21. Liu F, Wang S, Lin G, Chen S, New J. Chem., 42, 420 (2018)
  22. Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G, ACS Appl. Mater. Inter., 5, 6937 (2013)
  23. Meng Y, Jiang JG, Gao YC, Aihemaiti A, Ju TY, Xu YW, Liu N, Chem. Eng. J., 361, 294 (2019)
  24. Wang JT, Wang M, Li WC, Qiao WM, Long DH, Ling LC, AIChE J., 61(3), 972 (2015)
  25. Sutanto S, Dijkstra JW, Pieterse JAZ, Boon J, Hauwert P, Brilman DWF, Sep. Purif. Technol., 184, 12 (2017)
  26. Kakui T, Dispersion control of Al2O3 nanoparticles in Ethanol, Elsevier, pp.727 2018.
  27. Petrovic B, Gorbounov M, Soltani SM, Micro. Meso. Mater. (2020).
  28. Shi X, Zhao L, Pei J, Ge L, Wain P, Wang Z, Xiao W, Process Biochem, 66, 89 (2018)
  29. Jo DH, Jung H, Shin DK, Lee CH, Kim SH, Sep. Purif. Technol., 125, 187 (2014)
  30. Sang Y, Chen G, Huang J, J. Polym. Res., 27 (2020)
  31. Kumar KV, Preuss K, Lu L, Guo ZX, Titirici MM, J. Phys Chem C, 119, 22310 (2015)
  32. Caglayan BS, Aksoylu AE, J. Hazard. Mater., 252, 19 (2013)
  33. He H, Zhuang L, Chen S, Liu H, Li Q, Green Chem., 18, 5859 (2016)
  34. Witoon T, Mat. Chem. Phys., 137, 235 (2012)
  35. Das A, Southon PD, Zhao M, Kepert CJ, Harris AT, D’Alessandro DMT, Dalton, 41, 11739 (2012)
  36. Yu L, Kanezashi M, Nagasawa H, Tsuru T, Appl. Sci., 8, 1032 (2018)
  37. Li KM, Jiang JG, Yan F, Tian SC, Chen XJ, Appl. Energy, 136, 750 (2014)
  38. Wilfong WC, Srikanth CS, Chuang SS, ACS Appl. Mater. Inter., 6, 13617 (2014)
  39. Foo GS, Lee JJ, Chen CH, Hayes SE, Sievers C, Jones CW, ChemSusChem, 10, 266 (2017)
  40. Wang Y, Guo T, Hu X, Hao J, Guo Q, Powder Technol. (2020).
  41. Kolle JM, Fayaz M, Sayari A, Chem. Rev. (2021).
  42. Heydari-Gorji A, Sayari A, Ind. Eng. Chem. Res., 51(19), 6887 (2012)
  43. Lashaki MJ, Khiavi S, Sayari A, Chem. Soc. Rev., 48, 3320 (2019)
  44. Khan IU, Othman MHD, Hashim H, Matsuura T, Ismail AF, Rezaei-DashtArzhandi M, Azelee IW, Energy Conv. Manag., 150, 277 (2017)
  45. Petersson A, Wellinger A, in Biogas upgrading technologies-Developments and innovations, 200 2009.
  46. EIA, United States Natural Gas Industrial Price, EIA, U.S, 2021.
  47. Verbeeck K, Buelens LC, Galvita VV, Marin GB, Van Geem KM, Rabaey K, Energy Environ. Sci., 11, 1788 (2018)