화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.103, 305-313, November, 2021
Insight on photocatalytic oxidation of high concentration NO over BiOCl/Bi2WO6 under visible light
E-mail:,
The exhaust gas from an SCR (Selective Catalytic Reduction) unit still has about 100 ppm NO. BiOX/ Bi2WO6 catalysts were fabricated by a one-step ultrasound-assisted method and employed for photocatalytic oxidation of NO under visible light. The bandgap energy of BiOX (Cl, Br, I)/Bi2WO6 were estimated to be 2.65 eV, 2.35 eV, and 1.75 eV, respectively. Photocurrent density and EIS curves revealed that BiOCl/ Bi2WO6 had the optimal charge transfer velocity. Simulated NO removal experiments of BiOX/Bi2WO6 catalysts were carried out in a fixed bed reactor, 20-30% NO (100 ppm inlet) removal rate was achieved under visible light while promoting by H2O vapor, and the maximum NO removal rate is up to 31% on BiOCl/Bi2WO6. The fitted L-H model revealed that NO oxidation followed two-centered adsorption, and scavenger experiments confirm that the main ROS (Reactive Oxygen Species) was ㆍOH. In situ DRIFT spectra revealed that there were bridging nitrates, monodentate and bridging nitrites, and other intermediates formed on the BiOCl/Bi2WO6, these species can be scrubbed by seawater to regenerate the catalyst. The NO photocatalytic oxidation pathway was proposed. Good activity and stability of BiOCl/ Bi2WO6 provide a new approach for scale-up application of NO oxidation under visible light.
  1. Nielsen KV, Blanke M, Eriksson L, Vejlgaard-Laursen M, Control Eng. Pract., 76, 12 (2018)
  2. Gholami F, Tomas M, Gholami Z, Vakili M, Sci. Total Environ., 714, 136712 (2020)
  3. Sofiev M, Winebrake JJ, Johansson L, Carr EW, Prank M, Soares J, Vira J, Kouznetsov R, Jalkanen JP, Corbett JJ, Nat. Commun., 9, 406 (2018)
  4. Ammar NR, Seddiek IS, Ocean Eng, 137, 166 (2017)
  5. Zhou J, Wang H, Chem. Eng. J., 390, 124567 (2020)
  6. Yan T, Liu Q, Wang S, Xu G, Wu M, Chen J, ACS Catal., 10, 2747 (2020)
  7. Ichiura H, Kitaoka T, Tanaka H, Chemosphere, 51, 855 (2003)
  8. Nguyen VH, Nguyen BS, Huang CW, et al., J. Clean Prod., 270, 121912 (2020)
  9. Yang R, Zhu Z, Hu C, Zhong S, Zhang L, Liu B, Wang W, Chem. Eng. J., 390, 124522 (2020)
  10. Wang Y, Yu D, Wang W, Gao P, Zhong S, Zhang L, Zhao Q, Liu B, Sep. Purif. Technol., 239, 116562 (2020)
  11. Yang R, Dong F, You X, Liu M, Zhong S, Zhang L, Liu B, Mater. Lett., 252, 272 (2019)
  12. Wang Y, Ding K, Xu R, Yu D, Wang W, Gao P, Liu B, J. Clean Prod., 247, 119108 (2020)
  13. Zhang H, Yu D, Wang W, Gao P, Zhang L, Zhong S, Liu B, Appl. Surf. Sci., 497, 143820 (2019)
  14. Guo L, Zhang K, Han X, Zhao Q, Zhang Y, Qi M, Wang D, Fu F, Chin. J. Catal., 41, 503 (2020)
  15. Guo L, Zhang KL, Shen HD, Wang C, Zhao Q, Wang DJ, Fu F, Liang YC, Chem. Eng. J., 370, 1522 (2019)
  16. Yang R, Zhong S, Zhang L, Liu B, Sep. Purif. Technol., 235, 116270 (2020)
  17. Zhang Q, Jiang ZW, Wang MZ, Ge XW, Chin. J. Chem. Phys., 31, 701 (2018)
  18. Das T, Datta S, Nanoscale Adv., 2, 1090 (2020)
  19. Shen H, Liu G, Zhao Y, Li D, Jiang J, Ding J, Mao B, Shen H, Kim KS, Shi W, Fuel, 259, 116311 (2020)
  20. Zhang C, Zhu Y, Chem. Mater., 17, 3537 (2005)
  21. Wu L, Bi JH, Li ZH, Wang XX, Fu XZ, Catal. Today, 131(1-4), 15 (2008)
  22. Zhao K, Khan I, Qi K, Liu Y, Khantaee, Mater. Chem. Phys., 253, 123322 (2020)
  23. Huang J, Qin C, Lei S, Li J, Li M, Zhong J, Wang T, J. Phys. Chem. Solids, 139, 109323 (2020)
  24. Liu H, Yang C, Huang J, Chen J, Zhong J, Li J, Inorg. Chem. Commun., 113, 107806 (2020)
  25. Jiang Q, Ji MX, Chen R, Zhang Y, Li K, Meng CX, Chen ZG, Li HM, Xia JX, J. Colloid Interface Sci., 574, 131 (2020)
  26. Zhu S, Yang C, Li F, Li T, Zhang M, Cao M, Mol. Catalysis, 435, 33 (2017)
  27. Huo WC, Dong XA, Li JY, Liu M, Liu XY, Zhang YX, Dong F, Chem. Eng. J., 361, 129 (2019)
  28. Wang Y, Zeng Y, Zhang S, Zhong Q, Jom, 71, 2112 (2019)
  29. Lu X, Zhu G, Zhang R, Li S, Pan L, Nie J, Rao F, J. Mater. Sci.: Mater. Electron., 30, 17787 (2019)
  30. Huo WC, Xu WN, Cao T, Liu XY, Zhang YX, Dong F, Appl. Catal. B: Environ., 254, 206 (2019)
  31. Hu J, Chen D, Mo Z, Li N, Xu Q, Li H, He J, Xu J, Angew. Chem.-Int. Edit., 58, 2073 (2019)
  32. Wang FJ, Gu YY, Yang ZY, Xie YY, Zhang JJ, Shang XT, Zhao HB, Zhang ZZ, Wang XX, Appl. Catal. A: Gen., 567, 65 (2018)
  33. Jones SH, Hosse FPR, Yang X, Donaldson DJ, Indoor Air, 00, 1 (2020)
  34. Man H, Wen C, Luo W, Bian J, Wang W, Li C, J. Ind. Eng. Chem., 92, 77 (2020)
  35. Tahmasebi N, Sezari S, Abbasi H, Barzegar S, Bull. Mater. Sci., 42, 166 (2019)
  36. Wang WK, Zhu WZ, Mao L, Zhang JY, Zhou ZY, Zhao GH, J. Colloid Interface Sci., 557, 227 (2019)
  37. Rao F, Zhu G, Hojamberdiev M, Zhang W, Li S, Gao J, Zhang F, Huang Y, Huang Y, J. Phys. Chem. C, 123, 16268 (2019)
  38. Yang C, Zhang G, Meng Y, Pang G, Ni Z, Xia S, J. Hazard. Mater, 408, 124908 (2021)
  39. Arif M, Min Z, Yuting L, Yin H, Liu X, J. Ind. Eng. Chem., 69, 345 (2019)
  40. Hua S, Qu D, An L, Jiang W, Wen Y, Wang X, Sun Z, Appl. Catal. B: Environ., 240, 253 (2018)
  41. Jiang L, Li J, Wang K, Zhang G, Li Y, Wu X, Appl. Catal. B: Environ., 260, 118181 (2020)
  42. Ruan S, Huang W, Zhao M, Song H, Gao Z, Mater. Sci. Semicond. Process, 107, 104835 (2020)
  43. Li XW, Sun YJ, Xiong T, Jiang GM, Zhang YX, Wu ZB, Dong F, J. Catal., 352, 102 (2017)
  44. Morrow PE, J. Toxicol. Environ. Health, 13, 205 (1984)
  45. Zhou Y, Zhao ZY, Wang F, Cao K, Doronkin DE, Dong F, Grunwaldt JD, J. Hazard. Mater., 307, 163 (2016)
  46. Li XW, Zhang WD, Cui W, Sun YJ, Jiang GM, Zhang YX, Huang HW, Dong F, Appl. Catal. B: Environ., 221, 482 (2018)
  47. Alberici RM, Jardim WE, Appl. Catal. B: Environ., 14(1-2), 55 (1997)
  48. Wan J, Du X, Wang R, Liu E, Jia J, Bai X, Hu X, Fan J, Chemosphere, 193, 737 (2018)
  49. Wu Z, Yan X, Shen H, Li J, Shi W, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 231, 86 (2018)
  50. Gao XY, Tang GB, Peng W, Guo Q, Luo YM, Chem. Eng. J., 360, 1320 (2019)